Barrett Welch

My research focuses on understanding how chemical exposures from our environment can influence the immune system, particularly during pregnancy. I gained interest in this field through experiences working with a cohort in Bangladesh, in which my research showed that heavy metal exposure during pregnancy may impair children’s ability to mount effective vaccine responses. My current research assesses how maternal inflammation may mediate the influence of exposure to chemicals found in everyday consumer products. The goal of my ongoing work is to use innovative technologies and biostatistics to provide evidence about the maternal immune system responds to such chemical exposures, as well as how immunity influences pregnancy outcomes.

Adam Hand

Education/Licensure/Certification
• Ph.D., Civil Engineering, University of Nevada, Reno, 1998
• M.S., Civil Engineering, University of Nevada, Reno, 1995
• B.S., Civil Engineering, University of Nevada, Reno, 1993
• Registered Professional Engineer: Indiana, Nevada, New Mexico, Oregon
• Six Sigma Black Belt Certified, CS International Inc.
• Certified Professional Winemaker, University of California, Davis
Appointments
• University of Nevada, Reno, Civil & Environmental Engineering, Professor (07/22–present).
• University of Nevada, Reno, Civil & Env. Engineering, Associate Professor (07/16–06/22).
• Granite Construction Inc. (GCI), Vice President, Quality Management (2010–2016).
• Granite Construction Inc., Director of Quality Management, (2009–2010).
• Granite Construction Inc., Engineering Services Manager (2006–2009).
• Granite Construction Inc., Alternative Procurement Pavement Designer (2003–2006).
• Granite Construction Inc., Quality Systems Engineer (2000–2003).
• Purdue University, Civil Engineering, Assistant Professor (1998–2000).
• Western Regional Superpave Center (WRSC), University of Nevada, Reno, Research Faculty (1994–1998).
Qualifications
Dr. Hand has over 30 years of construction industry and academic experience in pavement materials, design, construction and sustainability, including horizontal and vertical construction, construction materials, construction management, quality management and forensics on alternative procurement transportation facilities (roads and highways, airfields, rail, tunnel, and mining) across the U.S. Teaching, research and consulting experience includes sustainable pavements and materials, development innovative asphalt pavement technologies, forensic analyses and expert witness. In the VP Quality Management role at GCI he had corporate responsibility for QM 13 AASHTO ReSource accredited labs in the U.S. with annual budgets up to $15M and multiple heavy civil APM projects. He also led the development and ISO certification of the first integrated ISO 9001, 14001, and 45001 management system of a construction company in the U.S. Dr. Hand was intricately involved in the materials, mix design, construction, QM, and analysis of the FHWA-sponsored WesTrack full-scale accelerated pavement project and is current a member of the AAPTP Feasibility of Cold Central Plant Recycling (CCPR) Asphalt Mixtures for Airports research team with planned test sections at the William J. Hughes Technical Center.

Dr. Hand has served as a PI or Co-PI on multiple NCHRP, FHWA, FAA, State DOTs, and other projects. He is an active technical community member having delivering over 200 invited presentations and over 150 publications. He is an editorial board member of the ASTM Advances in Civil Engineering Materials Journal. He is also the Past President of AAPT, a member of ASCE, ASTM, ASQ, AAPT, DPS ETG, FHWA TFG, NAPA, NSPE, and TRB. He chairs the Nevada State Public Works Board (Gubernatorial appointment), TRB Asphalt Pavement Construction and Rehabilitation Committee, and NAPA Net Zero Taskforce, and serves on 2 TRB and 2 NAPA committees. Dr. Hand was one of the four founding board of directors of the Greenroads Foundation.

Hao Xu

Dr. Hao Xu’s recent research areas include roadside LiDAR sensing networks, algorithms for processing high-density city cloud points, edge- and cloud-based data processing, connected vehicle communication, all-traffic trajectory generation from roadside LiDAR data, and GIS-based traffic information extraction from LiDAR trajectory data. His research group is a worldwide leader in roadside LiDAR sensing and applications in traffic. Dr. Xu and his collaborators are applyitng the roadside LiDAR technologies and all-traffic trajectory data for connected-autonomous vehicle applications, real-time traffic signal control systems, and performance evaluation of multimodal traffic safety and mobility. He has published 100 research papers and his research team has received more than $6 million in funding and multiple research and paper awards.
Dr. Xu led the implementation of the worldwide first LiDAR-equipped smart and connected intersection in Reno, Nevada, in 2017. Since then, he has been performing innovative research in roadside LiDAR hardware, algorithms, software implementation, data applications, real-time signal systems taking LiDAR data input, and LiDAR data service to CAVs. His research team implemented the worldwide first LiDAR-controlled pedestrian crossing signal, which is the first real-time traffic signal system controlled by cloud point sensing data. Based on Dr. Xu’s research and projects, UNR and Velodyne published a white paper that demonstrates the ability of LiDAR sensors to make transportation infrastructure more efficient, sustainable, and safe. Dr. Xu’s team collected multi-year roadside LiDAR data from various traffic scenarios and now maintains a large roadside LiDAR database as an invaluable data asset for smart traffic research.
Dr. Xu also led several projects on data-driven safety analysis, including street light data collection and safety analysis; safety benefit-cost analysis of roundabouts; before-and-after complete streets data collection; correlation analysis of Nevada crash data and ITS sensor data; automatic horizontal curve identification and estimation; assessment of the influence of driver, vehicle, roadway, and environmental factors on pedestrian and turning-traffic crashes at intersections; and development of a comprehensive crash database for Nevada that can be used with AASHTOWare Safety Analyst.
Dr. Xu’s research has attracted collaboration interest from multiple companies such as Velodyne LiDAR, Intel, Dell, Qualcomm, and Switch. His research and projects have been noted by multiple media publications, such as BBC, USA Today, Yahoo News, Business Wire, AASHTO Journal, and Nevada Today. Multiple traffic agencies have adopted the portable roadside LiDAR platform to collect extensive traffic information that is not available via traditional traffic sensors.

Amanda Yonan

I am a first generation college student. I began at Modesto Junior College and earned my B.S. in Biochemistry and Cell Biology at University of California, San Diego. I then earned my Ph.D. in Human Genetics at Columbia University in the City of New York. Specifically, I studied the genetic causes of Autism and Autism Spectrum Disorder. As teaching faculty I do not have a lab at UNR, and no longer conduct research.

Steve Frese

Dr. Frese’s research is centered on the human gut microbiome and its inhabitants. Our work at the University of Nevada, Reno examines how diet, food science, and biotechnology can be leveraged to meaningfully improve human health and nutrition.

Mustafa Hadj-Nacer

Dr. Mustafa Hadj-Nacer is a Research Assistant Professor at the University of Nevada Reno (UNR). Dr. Hadj-Nacer’s research is focused on applying and developing experimentally benchmarked computational fluid dynamics (CFD) models for several applications ranging from Nuclear Packaging to Enhanced Heat Transfer and Cooling systems.

Dr. Hadj-Nacer received a Ph.D. from Aix-Marseille University, France. His research included gas-surface interaction in micro-electro-mechanical systems (MEMS) and the measurement of the mass flow rate through micro-tubes of different cross-section shapes and materials. He also developed analytical and numerical approaches to calculate the mass flow rate in the slip, transitional and free molecular flow regimes.

Daniel Trugman

Dr. Trugman’s research focuses on developing and applying new techniques to analyze large datasets of seismic waveforms in order to better understand earthquake rupture processes and their relation to seismic hazards. His research team at the University is broadly interested in leveraging concepts from big data and scientific machine learning alongside high-fidelity physical modeling in order to advance earthquake science.

Topics of particular interest include to Dr. Trugman’s research team include:
– Nevada seismicity, tectonics, and earthquake sequences
– Earthquake source properties (magnitude, stress drop, and radiated energy estimates)
– Earthquake nucleation and rupture dynamics
– Stress transfer and earthquake triggering
– Earthquake early warning systems
– Ground motion prediction and hazard analysis
– Forensic seismology and nuclear monitoring

Ana de Bettencourt-Dias

Ana de Bettencourt-Dias received her ‘licenciatura’ (M.S. equivalent) in Technological Chemistry from the University of Lisbon in 1993, and her ‘Dr. rer. nat.’ (Ph.D. equivalent) in Inorganic Chemistry from the University of Cologne in 1997 with Prof. Thomas Kruck. In her graduate work, she isolated new titanium complexes as single source precursors for the chemical vapor deposition of TiN thin layers. She joined the group of Prof. Alan Balch at UC Davis in 1998 as a Gulbenkian postdoctoral fellow, where she studied the electrochemistry and structure of fullerenes and endohedral fullerenes.

In 2001 she joined the faculty at Syracuse University and started her work on luminescent lanthanide ion complexes. She moved to the University of Nevada, Reno as associate professor in 2007 and was promoted to professor in 2013. Her research centers on light-emitting compounds and coordination chemistry of the f block of the periodic table. She has published over 80 peer-reviewed manuscripts, several book chapters and invited editorials and edited two books in lanthanide photophysics. Her work has been funded by the Department of Energy, the National Science Foundation, the Petroleum Research Fund, the Department of Agriculture, the Brazilian National Council for Scientific and Technologic Development, and the Research Foundation of the State of São Paulo.

She served on the editorial advisory board for Inorganic Chemistry from 2013 to 2015, has been on the editorial advisory board for Comments on Inorganic Chemistry since 2016, is a managing member of the editorial board of the Journal of Rare Earths since 2014 and an associate editor for Inorganics since 2022. She has given over 200 oral presentations and was plenary or keynote speaker at several international conferences. She was program chair of the 2011 and conference chair of the 2014 Rare Earth Research Conference, organized the lanthanides and actinides symposia at the national meetings of the American Chemical Society, was the 2019 Chair of the Division of Inorganic Chemistry of the American Chemical Society and is co-program chair for the Division since 2022. She served as the Associate Vice President for Research at the University from 2015 to 2019. She returned to being a full-time faculty in July 2019, and is now the Susan Magee & Gary Clemons Professor of Chemistry. She received the 2006 Science & Technology Award of the Technology Alliance of Central New York, is a 2021 Fellow of the American Chemical Society and a 2022 Fellow of the American Association for the Advancement of Science. She has also been named a Foundation Professor and received the 2023 Outstanding Researcher Award from the University.

Li Li

Dr. Li’s research is focused on developing and applying computational models to assess how human-made chemical substances reside, travel, and change in the human socioeconomic system, the environment, and food webs, and how they enter our bodies and cause potential environmental and health concerns. These chemicals include notorious examples like flame retardants, plasticizers, pesticides, personal care products, and disinfectants, which are frequently detected in homes, food items, and tap water across the U.S. and other countries.

Manoj Sharma

Manoj Sharma, MBBS, Ph.D., MCHES® is a public health physician and educator with a medical degree from the University of Delhi and a doctorate in Preventive Medicine (Public Health) from The Ohio State University. He is also a Master Certified Health Education Specialist certified by the National Commission on Health Education Credentialing. He is currently a tenured Full Professor & Chair of the Social & Behavioral Health Department at the University of Nevada, Las Vegas in the School of Public Health. He is a prolific researcher and as of June 2023 had published 15 books, over 375 peer-reviewed research articles, and over 500 other publications (h-index 51, i-10 index over 200, and over 13,000 citations) and secured funding for over $10 million. He is ranked in the top one percentile of global scientists from 176 subfields by Elsevier.His research interests are in developing and evaluating theory-based health behavior change interventions, obesity prevention, stress-coping, community-based participatory research/evaluation, and integrative mind-body-spirit interventions.