Craig Schwartz

We use X-ray sources around the world around the world to understand disordered materials, particularly at interfaces, using large international laser facilities such as those in Italy and Japan. This includes materials such as liquids to better understand fundamental phenomena like how evaporation occurs. It also includes solar cells where we try to make ever more efficient devices.

Jared Bruce

Photochemistry is central to many aspects of energy conversion, atmospheric chemistry, corrosion, and catalysis. The ability to drive chemical reactions selectively and efficiently on surfaces with light remains a significant challenge, as these transformations are often dependent on the structure and chemical nature of the material surface. Furthermore, as more complex, multi-component materials are used in photochemical applications, robust model systems are needed to understand how synergistic properties impact these transformations.

The Bruce Group focuses on processes related to the conversion of light to drive chemical reactions at different interfaces. Our group are world experts in surface chemistry using ultrahigh vacuum, near ambient pressure, and operando spectroscopy/microscopy techniques. This, coupled with electrochemical and photoelectrochemical characterization, enables a unique insight into photochemical conversions at gas-liquid, liquid-solid, and solid-gas interfaces.

Michael Pravica

I am a high pressure physicist who studies matter subjected to extreme conditions using spectroscopic means (infrared, Raman, x-ray absorption and nuclear magnetic resonance.).

Gabriela Buccini

Gabriela Buccini, Ph.D., MSc, IBCLC, is an Assistant Professor of Social and Behavioral Health. Trained in Epidemiology, Public Health Maternal Child Nutrition, and Implementation Science. She applies mixed-methods research guided through the lens of Complex Adaptive Systems (CAS), Socioecological Model, and the Nurturing Care framework to investigate maternal and child health and nutrition, including breastfeeding & infant feeding, food insecurity, and early childhood development inequities. Dr. Buccini’s academic training is focused on epidemiology, mixed methods, and implementation science methods. Her research experience spans the fields of maternal-child health and nutrition focusing on vulnerable populations in low-income settings. She has an ongoing NIH/NICHD grant to understand the pathways for scaling up evidence-based early childhood and nutrition programs.

Tim Grigsby

Dr. Tim Grigsby is an Assistant Professor in the Department of Social and Behavioral Health. He completed his PhD in Preventive Medicine (Health Behavior Research) from the University of Southern California in 2016. His primary research interests are on the health effects of childhood trauma, the conceptualization, measurement, screening, and prevention of substance misuse, and identifying sources of health disparities in Hispanic/Latinx communities. His secondary interests are in the dissemination of novel research and analytic methods in public health research. His work explores the role of family- and community-based trauma exposure as risk factors for substance use, misuse, and related health outcomes in minority populations. Specifically, his work has identified adverse childhood experiences and perceived discrimination as important risk-factors of substance use, violence, and adverse health outcomes in minority populations.

Manoj Sharma

Manoj Sharma, MBBS, Ph.D., MCHES® is a public health physician and educator with a medical degree from the University of Delhi and a doctorate in Preventive Medicine (Public Health) from The Ohio State University. He is also a Master Certified Health Education Specialist certified by the National Commission on Health Education Credentialing. He is currently a tenured Full Professor & Chair of the Social & Behavioral Health Department at the University of Nevada, Las Vegas in the School of Public Health. He is a prolific researcher and as of June 2023 had published 15 books, over 375 peer-reviewed research articles, and over 500 other publications (h-index 51, i-10 index over 200, and over 13,000 citations) and secured funding for over $10 million. He is ranked in the top one percentile of global scientists from 176 subfields by Elsevier.His research interests are in developing and evaluating theory-based health behavior change interventions, obesity prevention, stress-coping, community-based participatory research/evaluation, and integrative mind-body-spirit interventions.

Shengjie Zhai

Dr. Shengjie (Patrick) Zhai is an Assistant Professor of Electrical and Computer Engineering at the University of Nevada, Las Vegas. His research expertise is centered around five key areas: 1) Novel nanomaterials and patterning techniques for bioelectronics, optoelectronics, and photovoltaics, 2) Plasmonic-enhanced biosensors for single-molecule biomedical analysis, 3) Micro/Nanoelectromechanical systems (MEMS/NEMS), 4) Physiological organ biomimetic systems built on microfluidic chips and multi-external driven, scaffold-free engineered human tissue models, and 5) Artificial intelligence-assisted health assessment.
His research contributions include the development of micro-engineered multichannel organ-on-a-chip devices, AI-reinforced biomimetic biosensors, and novel biomaterials for low-noise, comfortable personal health wearable monitor bioelectronics (PHWMB). Dr. Zhai has authored over 20 peer-reviewed articles published in respected journals such as Advanced Optical Materials, ACS Applied Materials & Interfaces, and IEEE COMPSAC, and holds nine patents in his field.
Among his accolades, Dr. Zhai is a recipient of two National Science Foundation Fund Awards (2021, 2019), the Nevada Governor’s Office of Economic Development Fund Award (2020), the NASA-Colgate Funding Award (2019), and a Department of Energy Research Award (2022). He has also served as an editor for the Journal of Renewable Materials and as a contributing reviewer for the Royal Society of Chemistry Advances. His academic services extend to numerous other academic journals, and he has participated as a panelist for NSF, DOE, and NASA grant review processes.

Mohamed Trabia

Introduction
Dr. Mohamed Trabia is a Professor of Mechanical Engineering since 2000 at UNLV. His research interests include design and optimization of mechanical systems, characterization of material properties under dynamic loading, system identification and control of smart actuators. Dr. Trabia has been the author of more than 200 technical journal and conference papers. He was involved in multiple funded research projects. He is a Fellow of the American Society of Mechanical Engineers (ASME).

M. Rashed Khan

Khan Lab@UNR aims to study, design, and develop soft materials, unconventional processes, and reconfigurable micro/nanodevices that can be harnessed and optimized further for advanced biochemical, biomedical, and physicochemical applications. The lab is also keen to establish a multidisciplinary smart-manufacturing research group, including researchers from various backgrounds. Through short and long-term active collaboration, Khan Lab@UNR would like to address fundamental challenges associated with soft micro-device fabrication, 3D/4D (bio)printing, and patterning, advanced hybrid sensor manufacturing, biomedical device development – which are still unnoticed and under-explored, and need further investigation.

Additionally, our group also focuses on computational neuroscience and neurobioengineering. Under this research direction, we study human brain, brain functions, brain structure so that the established knowledge can be broadly applicable to general biomecical science and knowledge of the brain and brain-diseases.

Rubab Saher

My research mainly focuses on urban irrigation water management using remote sensing datasets. I am primarily interested in improving the existing physical process for urban landscapes in the hope of saving water in arid cities.