Dustin Hines

The brain operates as a complex orchestration that involves many different cellular players. Dr. Dustin Hines’ research is aimed at understanding the role that glial cells play under normal and pathological conditions, which include neuropsychiatric disorders (depression), traumatic brain injury, stroke and Alzheimer disease. In particular, Dr. Hines researches how astrocytes and microglia cells both talk and listen to neurons. Dr. Hines employs molecular genetics, biochemistry, confocal and two photon microscopy, electrophysiology and behavioral assessments in mouse models to gain understanding of how glia cells impact brain signaling, circuitry and behavior. Dr. Hines’ research ultimately is directed towards understanding how all of the cells of the brain are orchestrated into the precise symphony that we call behavior.

Jefferson Kinney

Dr. Jeff Kinney’s research area is behavioral neuroscience with an emphasis in two general areas; the neurobiology of learning & memory and the biological basis of several neurological/psychological disorders. Research projects in Dr. Kinney’s laboratory focus on the cellular, molecular, and genetic mechanisms involved in various types of associative/spatial learning with particular emphasis on glutamate, GABA, and a few neuropeptides. Additional research projects focus on animal models of schizophrenia, Alzheimer’s disease, and mood disorders. The investigation of these disorders incorporates transgenic models and identifying potential therapeutic targets. The laboratory utilizes psychopharmacological, behavioral genetic, and molecular biology techniques to address experimental questions. Dr. Kinney is open to working with graduate students on other related topics in behavioral neuroscience.