Dennis Mathew

Focus. Understanding how a nervous system produces behavior is one of the great challenges of neuroscience. A significant part of this challenge is to study the various complexities that affect information flow through a neural circuit. One level of complexity relates to how neuromodulators convey information about an animal’s internal state (e.g., hunger) to affect information flow through a neural circuit to shape behavior. Understanding the basic principles of this complexity is the focus of research in the Mathew Lab.

Goal. The goal of the research in the Mathew lab is to define elements of the cellular and molecular logic by which hunger states affect information flow in the Drosophila larval olfactory circuit to shape the larva’s behavior.

Significance. This research is of great importance to humans as a subject of both basic and translational science. From a basic science point of view, clarifying the mechanisms by which an animal’s hunger shapes its behavior is vital if we are to understand how flexibility and adaptability are built into a neural circuit. Ultimately, understanding such mechanisms is fundamental for decoding how neural circuits support animal cognition and behavior. From a translational science point of view, since this research examines how the modulation of an insect’s olfactory circuit affects its navigational decisions, it could inspire new strategies to help manage insect vectors of disease. This is significant because many insect pests that transmit diseases to millions of people each year navigate toward their human hosts by primarily relying on their olfactory senses.

Robert Renden

We study the mechanisms that permit rapid and sustained synaptic transmission in the mouse brain, predominantly using the calyx of Held as a model synapse. This giant glutamatergic synapse in the auditory brainstem has a number of experimental advantages that permit us to trace the fundamental mechanisms that underlie chemical neurotransmission. We apply a variety of genetic and viral transduction techniques to disrupt presynaptic function at the calyx through transgenic mouse models, and expression in neuronal populations using adeno-associated virus (AAV). We use whole cell electrophysiology to record activity from the presynaptic or postsynaptic compartments (and sometimes both!) We complement these recordings with the use of use organic and genetically-encoded probes for functional imaging of essential messengers (Ca2+ ATP, and others).

Jingchun Chen

I am currently an associate professor at the Nevada Institute of Personalized Medicine (NIPM), UNLV, specializing in genetic studies of complex disorders, including Alzheimer’s disease (AD) and psychiatric disorders. With a strong background in genetics, genomics, and molecular biology, I have accumulated extensive knowledge and experience in genetics and bioinformatics over the past 16 years. My research has focused on AD in recent years, resulting in AD-related grants (n=4), publications (n=3) (two as a corresponding author) (e.g., Citation #1), and presentations (n=8) at the Alzheimer’s Association International Conference (AAIC). I am a member of various AD-related groups and have built connections with a variety of NIA data resources.

M. Rashed Khan

Khan Lab@UNR aims to study, design, and develop soft materials, unconventional processes, and reconfigurable micro/nanodevices that can be harnessed and optimized further for advanced biochemical, biomedical, and physicochemical applications. The lab is also keen to establish a multidisciplinary smart-manufacturing research group, including researchers from various backgrounds. Through short and long-term active collaboration, Khan Lab@UNR would like to address fundamental challenges associated with soft micro-device fabrication, 3D/4D (bio)printing, and patterning, advanced hybrid sensor manufacturing, biomedical device development – which are still unnoticed and under-explored, and need further investigation.

Additionally, our group also focuses on computational neuroscience and neurobioengineering. Under this research direction, we study human brain, brain functions, brain structure so that the established knowledge can be broadly applicable to general biomecical science and knowledge of the brain and brain-diseases.

Joel Snyder

Dr. Snyder received a Ph.D. in Psychology from Cornell University and was a post-doctoral fellow at University of Toronto and Harvard University before starting the Auditory Cognitive Neuroscience Laboratory at UNLV. He is an expert on auditory perception and its neural basis and has published numerous empirical studies and literature reviews in top psychology and neuroscience journals. His research has been supported by UNLV, the National Institutes of Health, the National Science Foundation, the Army Research Office, the Office of Naval Research, and the REAM Foundation. Dr. Snyder’s research accomplishments were recognized with the 2009 Samuel Sutton Award for Early Distinguished Contribution to Human ERPs and Cognition, and the William Morris Excellence in Scholarship Award. He was also the UNLV nominee for the 2018 Nevada Regents’ Researcher Award.

Edwin Oh

We are a research group that thrives on collaboration. Through our interactions with collaborators, public health labs, and patients we have developed a research program that interrogates the following themes:

1) Wastewater genomics and COVID-19

Wastewater testing has been used for years to investigate viral infections, to study illicit drug use, and to understand the socioeconomic status of a community based on its food consumption. While tools are in place in many states to evaluate the presence of specific viral strains, the community has not needed previously to collaborate on a global scale to standardize procedures to detect and manage COVID-19 transmission. In response to this challenge, our laboratories in Arizona, Nevada, and Washington have developed collection techniques and genomic and bioinformatic approaches to harmonize and visualize the impact of SARS-CoV-2 infection and viral mutation rates in communities populated by local citizens and international tourists. Our findings will contribute to the development of best practices in sampling and processing of wastewater samples and genomic techniques to sequence viral strains, an area required for environmental surveillance of infectious diseases, and has the strong potential to improve the clinically predictive impact of the viral genotype on patient care and vaccine utility.

2) Rare neurological conditions

An association between the 16p13.2 copy number variation deletion and seizures has suggested that a) systematic suppression of each of genes in the loci might yield similar neurological phenotypes seen in the 16p13.2 deletion; and b) such genes might be strong candidates for harboring rare pathogenic point mutations. Through these studies, we discovered USP7 as a message capable of inducing abnormal neurological activity in brain organoids, cultured neurons, and loss-of-function mouse models. Together with collaborators at the Foundation for USP7-Related Diseases (, our studies are centered on the mechanism by which USP7 gene dosage and rare variants can induce pathology. In addition, we have also identified other gene loci that mimic USP7-related disorders in human and animal models.

3) Ciliary biology and neurodevelopmental conditions

Large-scale studies have begun to map the genetic architecture of Schizophrenia. We now know that the genetic contribution to this condition arises from a variety of lesions that include a) rare copy number variants (CNVs) of strong effect; b) common non-coding alleles of mild effect; and c) rare coding alleles that cluster in biological modules. The challenge that has emerged from these studies is the requirement for large sample sizes to detect significant genetic signals. These findings intimate that SZ is genetically heterogeneous and manifesting potentially as a clinically heterogeneous group of phenotypes with discrete physiological drivers. To address this challenge and to complement the ongoing sequencing effort of cross-sectional SZ, we propose to sample individuals with extreme phenotypes (i.e., resistant to treatment: TRS) to potentially discover an enrichment of causal rare variants which would have otherwise not been observed or been difficult to detect in a large, random sampling of SZ. In addition, we will focus on the role of a specific biological module, the pericentriolar material (including the centrosome, basal body, and primary cilium) and how it relates to the development of the brain and behavior through the genomic and functional dissection of PCM1.

Rochelle Hines

Rochelle Hines’ research is aimed at understanding neurodevelopmental processes under normal and pathological conditions, which include autism spectrum disorders, schizophrenia, and developmental epilepsies. In particular, Rochelle’s studies focus on understanding the formation and stabilization of specific synapse types during development, with an emphasis on inhibitory synapses. Rochelle employs molecular genetics, biochemistry, confocal and electron microscopy, behavioral assessments and electroencephalography in mouse models to gain understanding of how inhibitory synapse function and dysfunction during development impacts brain signaling, circuitry and behavior. The ultimate goal of Rochelle’s research is to improve our understanding of neurodevelopmental disorders and to promote novel therapeutic strategies.

Rochelle earned her PhD in Neuroscience at the University of British Columbia in Vancouver, Canada (2009), followed by a postdoctoral fellowship at Tufts University School of Medicine in Boston, MA (2015).

Dustin Hines

The brain operates as a complex orchestration that involves many different cellular players. Dr. Dustin Hines’ research is aimed at understanding the role that glial cells play under normal and pathological conditions, which include neuropsychiatric disorders (depression), traumatic brain injury, stroke and Alzheimer disease. In particular, Dr. Hines researches how astrocytes and microglia cells both talk and listen to neurons. Dr. Hines employs molecular genetics, biochemistry, confocal and two photon microscopy, electrophysiology and behavioral assessments in mouse models to gain understanding of how glia cells impact brain signaling, circuitry and behavior. Dr. Hines’ research ultimately is directed towards understanding how all of the cells of the brain are orchestrated into the precise symphony that we call behavior.

Grant Mastick

To build a brain, the embryo must produce a spatially organized array of a vast number of neurons, then interconnect them. Our research group uses genetic and molecular approaches in mouse and chick embryos to investigate the functions of specific genes in brain development. This research has implications for the molecular therapy of neurological disease and injury, and is funded by the National Institutes of Health.

Our current research is on the migration of neurons and their axons through the developing brain. We investigate how molecular signals guide axons to migrate precisely long distances on longitudinal pathways, how cranial nerves grow out to connect to muscles, and also how neuron cell bodies settle in specific positions. Our studies focus on a system of signals, the Slit/Robo repellents and the Netrin attractants, to understand the mechanisms by which opposing signals are integrated by neurons.