Jenny Ouyang

How do some individuals in the same population raise ten offspring while others only have one? How do some individuals survive cold winters and breed again while others do not live past their first winter? Our lab is interested in the ecology and evolution of physiological systems. To answer the questions above, we empirically test, in natural and laboratory populations, how, and at what rate, physiologically-regulated traits can evolve and enable organismal adaptation to changing environmental conditions.

Lance Hellman

My research focuses primarily at probing the affects of amino acid perturbation on the overall tertiary structure. We use O6-alkylguanine-DNA alkyltranferase (AGT) as our model protein. AGT is a small DNA repair protein that remove alkylations on guanine and thymine residues. My lab uses structure guided design to alter the tertiary structure of AGT and measure the biothermodynamic affects of these mutations. We are interested in how these mutations affect the global stability of AGT by differential scanning fluorimetry. We also probe how these mutations affect AGT’s ability to bind in a cooperative manner by gel shift assays and fluorescence anisotropy techniques.

El Hachemi Bouali

I am an applied geologist by training and an opportunistic scientist in practice, meaning I love geology but am interested in many areas of the natural sciences. I can abbreviate my research focus with the acronym GASP: geophysical and surface processes.

Geophysical Processes. I use geophysical and remote sensing instruments to study changes on the Earth’s surface and within the shallow subsurface. I will be starting a research project (early 2023) on utilizing passive seismic methods to map bedrock depth (or sediment thickness) as an indirect approach to identify buried faults and to study extensional tectonics of the Las Vegas valley.

Surface Processes. I use an interdisciplinary approach to study our dynamic Earth. A major research project I am currently working on (2021-future) is titled Analyses of spring water chemistry and microbiology in the Spring Mountains, Nevada. I use field and laboratory methods across multiple disciplines (geology, biology, and chemistry) to quantify physical properties of high-elevation springs and analyze microbial communities found in these springs.

I teach courses that are required or electives for the BS in Environmental & Resource Science and BS in Biology. I teach the following courses at Nevada State:

–GEOL 101A/L Exploring Planet Earth Lecture and Lab
–GEOL 333 Principles of Geomorphology
–GEOL 405 Geology of the National Parks
–NRES 322 Soils
–NRES 467 Regional and Global Issues in Environmental Science
–BIOL/ENV 494 Biology and Environmental Science Colloquium

I received a Ph.D. in Geology from Michigan Technological University, an MS in Geosciences and BS in Geophysics from Western Michigan University, and an AS from Kalamazoo Valley Community College. I was the Postdoctoral Fellow in Environmental Science at Trinity College (Hartford, CT) and a NASA Earth and Space Science Fellow while earning my Ph.D. I have also worked as a Geological Mapping Technician for two summers at Pictured Rocks National Lakeshore in the Upper Peninsula of Michigan where I assisted with the creation of ten surficial geology quadrangle maps by acquiring near-surface geophysical data and auger samples.

Hon-Vu Q. Duong

I am currently not conducting any research. I focus on teaching and mentoring students.

Joel Snyder

Dr. Snyder received a Ph.D. in Psychology from Cornell University and was a post-doctoral fellow at University of Toronto and Harvard University before starting the Auditory Cognitive Neuroscience Laboratory at UNLV. He is an expert on auditory perception and its neural basis and has published numerous empirical studies and literature reviews in top psychology and neuroscience journals. His research has been supported by UNLV, the National Institutes of Health, the National Science Foundation, the Army Research Office, the Office of Naval Research, and the REAM Foundation. Dr. Snyder’s research accomplishments were recognized with the 2009 Samuel Sutton Award for Early Distinguished Contribution to Human ERPs and Cognition, and the William Morris Excellence in Scholarship Award. He was also the UNLV nominee for the 2018 Nevada Regents’ Researcher Award.

Edwin Oh

We are a research group that thrives on collaboration. Through our interactions with collaborators, public health labs, and patients we have developed a research program that interrogates the following themes:

1) Wastewater genomics and COVID-19

Wastewater testing has been used for years to investigate viral infections, to study illicit drug use, and to understand the socioeconomic status of a community based on its food consumption. While tools are in place in many states to evaluate the presence of specific viral strains, the community has not needed previously to collaborate on a global scale to standardize procedures to detect and manage COVID-19 transmission. In response to this challenge, our laboratories in Arizona, Nevada, and Washington have developed collection techniques and genomic and bioinformatic approaches to harmonize and visualize the impact of SARS-CoV-2 infection and viral mutation rates in communities populated by local citizens and international tourists. Our findings will contribute to the development of best practices in sampling and processing of wastewater samples and genomic techniques to sequence viral strains, an area required for environmental surveillance of infectious diseases, and has the strong potential to improve the clinically predictive impact of the viral genotype on patient care and vaccine utility.

2) Rare neurological conditions

An association between the 16p13.2 copy number variation deletion and seizures has suggested that a) systematic suppression of each of genes in the loci might yield similar neurological phenotypes seen in the 16p13.2 deletion; and b) such genes might be strong candidates for harboring rare pathogenic point mutations. Through these studies, we discovered USP7 as a message capable of inducing abnormal neurological activity in brain organoids, cultured neurons, and loss-of-function mouse models. Together with collaborators at the Foundation for USP7-Related Diseases (www.usp7.org), our studies are centered on the mechanism by which USP7 gene dosage and rare variants can induce pathology. In addition, we have also identified other gene loci that mimic USP7-related disorders in human and animal models.

3) Ciliary biology and neurodevelopmental conditions

Large-scale studies have begun to map the genetic architecture of Schizophrenia. We now know that the genetic contribution to this condition arises from a variety of lesions that include a) rare copy number variants (CNVs) of strong effect; b) common non-coding alleles of mild effect; and c) rare coding alleles that cluster in biological modules. The challenge that has emerged from these studies is the requirement for large sample sizes to detect significant genetic signals. These findings intimate that SZ is genetically heterogeneous and manifesting potentially as a clinically heterogeneous group of phenotypes with discrete physiological drivers. To address this challenge and to complement the ongoing sequencing effort of cross-sectional SZ, we propose to sample individuals with extreme phenotypes (i.e., resistant to treatment: TRS) to potentially discover an enrichment of causal rare variants which would have otherwise not been observed or been difficult to detect in a large, random sampling of SZ. In addition, we will focus on the role of a specific biological module, the pericentriolar material (including the centrosome, basal body, and primary cilium) and how it relates to the development of the brain and behavior through the genomic and functional dissection of PCM1.

Donald Price

A major theme in my research is to understand how species adapt to diverse environmental and biological factors and diverge into new species. The evolutionary changes that permit species to survive and reproduce across a wide range of environments has resulted in a remarkable range of biological complexity.

My research group studies the interplay of behavior, ecology, genetics, and physiology to determine how species adapt to environmental changes and how diversification of populations leads eventually to the formation of new species. One focus of my group is the amazing Hawaiian Drosophila, which boasts up to 1,000 species in several taxonomic groups. Using genome sequencing and gene expression analyses coupled with detailed behavioral and physiological measurements we have identified genes that are involved in temperature adaptation between two species and between two populations within one species along an environmental gradient. We have also identified genes and epicuticular hydrocarbons that are involved in behavioral reproductive isolation and hybrid sterility between species. Initial studies have begun on the interaction with microbes, (bacteria and yeasts) that are important for food, internal parasites/symbionts, and possibly host-plant associations. In collaboration with others, we are also investigating the genetics of Hawaiian bats and birds, Drosophila melanogaster, the invasive Drosophila suzukii, and Hawaiian Metrosideros trees.

Allen Gibbs

My lab uses experimental evolution in the laboratory to study how physiological systems evolve. We subject populations of fruitflies (Drosophila) to stressful conditions and investigate how they evolve in response to stress over many generations. Our current major projects involve flies that have been selected for resistance to desiccation and starvation stress for >100 generations. To understand the relevance of this laboratory research to nature, we have also studied several other types of insects and their relatives, including grasshoppers, ants, desert fruitflies, scorpions, etc.

Iain Buxton

The Buxton lab is exploring contraction-relaxation coupling in the uterine myometrium in order to better understand and develop treatments for the problem of preterm labor. Preterm delivery of an underdeveloped fetus is a global problem. Babies delivered prior to full development at term have multiple medical problems that plague these individuals throughout their lifetime. Prematurity explains 75% of all fetal morbidity and mortality. Thus, beyond the tragic and costly fact of their prematurity, is the major impact on individuals and societies long-term. There are no effective (or FDA-approved) medications that prevent contractions of the uterus in patients who enter labor preterm (PTL). What is used is ineffective at allowing the fetus to remain in the womb until term. Drugs employed to prevent PTL (tocolytics) are only evaluated for an ability to prevent labor for 48 hours, a time during which treatments can ready the fetus to breath air. PTL leads to preterm delivery (PTD) in over 50% of cases. Spontaneous PTL (sPTL, no explanation such as infection) accounts for the majority of PTL.

The approach to sPTL we are pursuing is based on the non-canonical pathway by which NO relaxes myometrium. Our approach hypothesizes specific S-nitrosation differences in the protein fingerprint of sPTL compared with laboring myometrium. What is needed to investigate sPTL is to know the specific proteins that are post-translationally S-nitrosated and their abundance and/or unique presence and the impact of their S-nitrosation in pregnancy, labor and sPTL.

We have discovered particular unique proteins that are deferentially S-nitrosated and are pursuing their role in mediating relaxation on pregnancy and labor. One such protein is a channel called TREK-1. This channel is stretch-activated. We discovered genetic variants of the channel associated with PTL in women. Electrophysiological measurement of these gene variant channels suggests that their expression in women may constitute a mechanism to explain PTL in these patients. Drug discovery is in process to generate therapeutics to treat this form of PTL.

In a second thrust, the Buxton lab is looking for therapeutic targets in breast cancer. Tumor cells migrate to distant sites in the body before they are capable of forming aggressive metastases and thus remain dormant. We do not know the cellular behavior of disease we label latent but attracting a blood supply may be an early property that precedes and is required for those lesions that become malignant in women. Breast cancer specific mortality is almost exclusively a function of metastasis. Growth of tumor cells as metastases dictates that tumor cells must first develop a capillary blood supply or risk necrosis. Metastatic tumor cells have already attracted a blood supply, a hallmark of cancer. What activates dormant cells at metastatic sites to move from a quiescent to aggressive phenotype is not known. It is critical to determine the effect of a kinase we discovered to be released from cancer cells because every indication is that it produces a blood supply for cells that can later become malignant, an event that cannot take place unless a blood supply is available. Our current experiments are focused on the actions of the kinase that permit intravasation and extravasation of tumor cells that permit their passage to distant sites in the body where they can lodge and remain undetected for years. We have developed an inhibitor of the kinase and hope to demonstrate its potential a breast cancer prophylactic.

David Alvarez-Ponce

Assistant Professor, University of Nevada, Reno, 2014 – present

Juan de la Cierva Postdoctoral fellow, Consejo Superior de Investigaciones Cientificas, Spain, 2012-2014

Postdoctoral fellow, Trinity College Dublin, 2012

Postdoctoral researcher, National University of Ireland Maynooth, 2010-2012

See our lab webpage for research description: https://genomeevol.wordpress.com