Dev Chidambaram

MER Lab focuses on the design, engineering, research, development and characterization of materials for electrochemical applications in sustainable energy generation and environmental protection. Our focus is on understanding electron transfer processes using spectroscopic techniques (including synchrotron-based techniques), and applying that knowledge to solve interdisciplinary materials and engineering problems. Electrochemistry and spectroscopy can be used to obtain complementary information; electrochemistry assesses the nature and kinetics of an electron transfer reaction and spectroscopy, often used simultaneously with electrochemistry in our research, provides chemical and molecular information of the same reaction. Our research is primarily in the area of materials for energy.

Grant Mastick

To build a brain, the embryo must produce a spatially organized array of a vast number of neurons, then interconnect them. Our research group uses genetic and molecular approaches in mouse and chick embryos to investigate the functions of specific genes in brain development. This research has implications for the molecular therapy of neurological disease and injury, and is funded by the National Institutes of Health.

Our current research is on the migration of neurons and their axons through the developing brain. We investigate how molecular signals guide axons to migrate precisely long distances on longitudinal pathways, how cranial nerves grow out to connect to muscles, and also how neuron cell bodies settle in specific positions. Our studies focus on a system of signals, the Slit/Robo repellents and the Netrin attractants, to understand the mechanisms by which opposing signals are integrated by neurons.

Christine Cremo

Dr. Christine Cremo has worked in the field of muscle proteins since her doctoral work on the muscarinic acetylcholine receptor in the heart. After working on fluorescent nucleotide derivatives for studies on skeletal myosin structure and function, she moved on to try to understand the regulation of the smooth muscle myosin ATPase by phosphorylation of the regulatory light chain. The focus has been on structure-function relationships. This work is ongoing, as well as a new focus on structure-function relationships of smooth muscle myosin light chain kinase. This work has high relevance to several human diseases such as asthma, hypertension, and gastrointestinal disorders.

Sean Casey

Our research is centered on the investigation of growth mechanisms of semiconductor materials during processes such as plasma-enhanced chemical vapor deposition (PECVD). To mimic these plasmas under more carefully controlled conditions, we use a hyperthermal beam of the reactive species of interest and single crystal semiconductor wafers.

Dylan Kosma

Dr. Dylan Kosma is a Plant Physiologist & Molecular Geneticist.  He is an Assistant Professor in the College of Agriculture, Biotechnology and Natural Resources, University of Nevada, Reno.

The aerial organs of all higher plants are covered with a lipid-rich cuticle that serves to protect plants from their environment. The cuticle is comprised of a lipid polymer, cutin, that is embedded and covered with aliphatic waxes. Suberin is a biosynthetically-related lipid polymer that is found in tree bark, seed coats, the surface of mature roots and surrounding the vasculature of young roots. Suberin production is a ubiquitous response to wounding. Collectively, cutin and suberin comprise the most abundant, naturally occurring lipid polymers on the planet. It is estimated that leaf cuticles alone represent a surface area twice that of the earth’s land surface.

The Kosma lab is focused on understanding the complex plant lipid polymers cutin and suberin. We use a multidisciplinary approach combining biochemistry, analytical techniques and molecular genetics to comprehend the macromolecular structure and functional significance of these polymers with an emphasis on their role in plant tolerance to abiotic stress.

Sergey Varganov

Our research centers on application and development of electronic structure theory and molecular dynamics. The main areas of interest are catalytic properties of metal nanoclusters, coherent control of chemical reactions and electronic structure methods for strongly correlated electrons.

Laina Geary

developing strategies to synthesize complex organic molecules and biologically relevant structures from the simplest precursors, and understanding the mechanistic details. Essentially, we are interested in developing highly chemoselective reactions to minimize substrate preactivation and waste generation and maximize functional group compatibility.

Students will get training in organic synthesis, organometallic chemistry, and asymmetric catalysis within the broad goal of simplicity to complexity via C-C bond formation.

Seungil Ro

My research interest is studying the roles of microRNAs (miRNAs) that control gut neuromuscular (motility) disorders. The gut is a vital organ for human survival: it is where food is digested, where nutrients are absorbed into the bloodstream, and where undigested waste moves through and leaves the body. This digestive process is achieved by the synchronized movement (motility) of gastrointestinal (GI) muscle, which mixes food and propels the digested content through the GI tract. Motility of GI muscle is controlled by three key cells: enteric nervous system (ENS), interstitial cells of Cajal (ICC), and smooth muscle cells (SMCs). ENS and ICC generate complex rhythmic motor behavior and spontaneous electrical slow waves, respectively, both of which control SMCs, the final effectors for muscle contraction and muscle relaxation. Developmental abnormalities and pathophysiological damage of these cells are directly linked to GI neuromuscular diseases such as Hirschsprung’s disease, diabetic gastroenteropathy (DGEP), gastrointestinal stromal tumor (GIST), and chronic intestinal pseudo-obstruction (CIPO).

Adrian Harpold

Dr. Adrian Harpold’s interests are in quantifying catchment and basin scale water and solute budgets and the linkages between hydrology, hydrochemistry, geomorphology, and ecology in montane forested systems. Mountain ecosystems are the major water source and carbon sink in western North America and subject to ongoing changes in climate and disturbance. Improved ecohydrological process understanding has the potential to improve local to global-scale water resource management in the 21st century.

My research program utilizes existing observation networks and new field observations to improve the ecohydrological process underpinnings of Earth systems models. My diverse interests and background has led to investigations of runoff generation mechanisms via hydrological tracers and models, as well as the partitioning of water to its various stores and fluxes. I am particularly interested in better linking the hydrological sub-disciplines of catchment and snow hydrology to improve our predictions of headwater catchment response to environmental change.