Keith Lawler

My primary research interest lies in studying systems where strong electron correlation effects are the source of exotic bonding or unique properties, or where intricate changes in the bonding motif drive an observed phase change. This involves studying a system’s electronic structure; its properties, both structural and spectroscopic; and its response to external stimuli such as pressure and temperature. Understanding these electron driven properties and responses is fascinating from a scientific point of view, and it will be the key to unlocking the next generation of functional materials.

Gabrielle Boisrame

The majority of Dr. Boisrame’s research focuses on the interactions between wildfire, land cover, and water in mountain regions of the Western USA. Since 2013 she has been using a combination of fieldwork, remote sensing, and hydrological modeling to explore how managing natural wildfire in landscapes can improve water resources and forest health. Before coming to DRI, she worked as an environmental scientist for the Delta Stewardship Council, a California State Agency. In this position, she studied adaptive management strategies and calculated large-scale water budgets. Other research areas include agricultural water management, consumptive use calculations, restoration of wetlands and streams, and groundwater resource management.

Shengjie Zhai

Dr. Shengjie (Patrick) Zhai is an Assistant Professor of Electrical and Computer Engineering at the University of Nevada, Las Vegas. His research expertise is centered around five key areas: 1) Novel nanomaterials and patterning techniques for bioelectronics, optoelectronics, and photovoltaics, 2) Plasmonic-enhanced biosensors for single-molecule biomedical analysis, 3) Micro/Nanoelectromechanical systems (MEMS/NEMS), 4) Physiological organ biomimetic systems built on microfluidic chips and multi-external driven, scaffold-free engineered human tissue models, and 5) Artificial intelligence-assisted health assessment.
His research contributions include the development of micro-engineered multichannel organ-on-a-chip devices, AI-reinforced biomimetic biosensors, and novel biomaterials for low-noise, comfortable personal health wearable monitor bioelectronics (PHWMB). Dr. Zhai has authored over 20 peer-reviewed articles published in respected journals such as Advanced Optical Materials, ACS Applied Materials & Interfaces, and IEEE COMPSAC, and holds nine patents in his field.
Among his accolades, Dr. Zhai is a recipient of two National Science Foundation Fund Awards (2021, 2019), the Nevada Governor’s Office of Economic Development Fund Award (2020), the NASA-Colgate Funding Award (2019), and a Department of Energy Research Award (2022). He has also served as an editor for the Journal of Renewable Materials and as a contributing reviewer for the Royal Society of Chemistry Advances. His academic services extend to numerous other academic journals, and he has participated as a panelist for NSF, DOE, and NASA grant review processes.

Sarah VanderMeer

My research focus involves mapping surficial geology, which includes collecting traditional field data (e.g. sediment samples) as well as any pertinent geophysical data (e.g. passive seismic) and/or lab analyses (e.g. grain size analysis). I also use GIS mapping software to produce final map products. I use maps with other important data to help interpret how various landscapes developed into the patterns we see today.

Mohamed Trabia

Dr. Mohamed Trabia is a Professor of Mechanical Engineering since 2000 at UNLV. His research interests include design and optimization of mechanical systems, characterization of material properties under dynamic loading, system identification and control of smart actuators. Dr. Trabia has been the author of more than 200 technical journal and conference papers. He was involved in multiple funded research projects. He is a Fellow of the American Society of Mechanical Engineers (ASME).

Carrie Tyler

Global climate change and human activities continue to create an urgent need for effective conservation and management strategies, which require a thorough understanding of how and why ecosystems respond to extreme structural changes. My research on marine invertebrate communities, therefore, includes two main themes: (1)investigations assessing the quality and biases of the fossil record and identifying the limits of its applicability to paleoecology and conservation, and (2) understanding processes driving ecosystem structure and functioning, and community response to past disturbances.

Joshua Island

I lead the Nanoscale Physics Group in the Physics Dept. at UNLV. We are focused on studying low dimensional materials in electronic devices. We use a combination of low temperature and high frequency probes to study these devices and discern exotic phenomena that arise as a result of confinement and interactions. We are principally interested in how low temperature phases evolve under dimensionality reduction and when subjected to high magnetic fields and strong external electromagnetic drives.

Jingchun Chen

I am currently an associate professor at the Nevada Institute of Personalized Medicine (NIPM), UNLV, specializing in genetic studies of complex disorders, including Alzheimer’s disease (AD) and psychiatric disorders. With a strong background in genetics, genomics, and molecular biology, I have accumulated extensive knowledge and experience in genetics and bioinformatics over the past 16 years. My research has focused on AD in recent years, resulting in AD-related grants (n=4), publications (n=3) (two as a corresponding author) (e.g., Citation #1), and presentations (n=8) at the Alzheimer’s Association International Conference (AAIC). I am a member of various AD-related groups and have built connections with a variety of NIA data resources.

Monika Gulia-Nuss

The long-term interest of my research program is to understand the biology of disease vectors to identify novel strategies for vector control and pathogen transmission. My lab focuses on two arthropod vectors of human diseases: mosquitoes and ticks. Our research spans multiple disciplines, including ecology, biochemistry and physiology, genetics, genomics, and computational biology, to investigate questions related to arthropod biology. We employ techniques that encompass molecular, cellular, and organismal levels of studies. Since setting up my lab at UNR in 2016, the most significant research contributions of my program have been 1) pioneering an embryo injection protocol for ticks, 2) the first successful use of CRISPR/Cas9-based genome editing in ticks, 3) producing the first chromosome-level genome assembly for a tick species, and 4) adapting and optimizing a RADseq protocol (Rapture) for genome-wide markers to understand population genetic structure of mosquitoes and ticks. In addition, we have recently initiated a project for the identification of biomarkers for early diagnostics of Lyme disease.

Evette Fuerniss

Patient education and readmission rates in the acute care setting