Markus Berli

Dr. Markus Berli’s research interests focus on modeling and measurement of soil structural dynamics affecting fluid flow and solute transport. Key issues are the connection of hydraulics and mechanics of soils at the micro-scale and upscaling physical soil behavior from pore to sample- and eventually field-scale.

Further areas of interest are: New methods for in-situ characterization of soil hydraulic and mechanical properties; improved characterization of soil pore geometry using X-ray-Micro-Tomography and pore water flow employing Neutron-Tomography; improved methods to assess and predict soil deterioration due to mechanical impacts.

His vision is that micro-scale coupling of soil hydraulics and mechanics with chemical and microbial processes will provide a conceptual framework for an improved understanding of fluid flow, contaminant fate and transport in the vadose zone, to sustain soil productivity and to secure water resources of sufficient quality and quantity world-wide.

Erick Bandala

Erick R. Bandala, Assistant Research Professor for Advanced Water Technologies at the Desert Research Institute in Las Vegas, NV. Dr. Bandala holds PhD degree in Engineering, a Master degree in Organic Chemistry and a B.S. degree in Chemical Engineering. Before his current position, he was faculty member of the department of Civil and Environmental Engineering at Universidad de Las Americas Puebla (2007-2013) and the Department of Chemical, Food and Environmental Engineering (2013 to 2015) and titular researcher (1993-2007) at the Mexican Institute of Water Technology (belonging to the Ministry of Environment Mexico) in Morelos, Mexico. Dr. Bandala has taught graduate and undergraduate courses covering fundamentals and applications of environmental sciences and engineering with particular emphasis in water treatment processes for disinfection and decontamination, soil treatment and its application for site restoration. Dr. Bandala has been the recipient of several prestigious awards, Visiting Professor at the Department of Technology and Environmental Design at Appalachian State University (2014), the UDLAP Outstanding Teaching Award 2013, the Puebla State 2012 Science and Technology Award, Professional Hydrologist (Water Quality) by the American Institute of Hydrology, the Rice International Visiting Fellow on Energy, the Environment and Sustainability 2008-2009, National Researcher (Level II) on the National Council of Science and Technology-Mexico (2004-present), visiting Professor at the School of Civil and Agricultural Engineering. Universidad de Concepción, Chile 2004 and 2008 and Invited Researcher at the Plataforma Solar de Almería, Spain (2000). He has research interests in several different topics related with Environmental Engineering including A) Mechanistic aspects of the use and application of solar driven advanced oxidation processes (AOPs) for environmental restoration B) Development of advanced water and soil treatment for site restoration C) Synthesis, characterization and application of nanomaterials for Indoor Farming systems D) Development of Climate Change adaptation methodologies for water security. As result of his research activities, Dr. Bandala is author or co-author of over 100 international publication including 68 peer-reviewed papers in international journals with high impact index (average impact factor 2.7, >1490 citations, h-index 22); 5 books, 25 book chapters and 65 works published in proceedings of international conferences.

Gayle Dana

Dr. Dana is the NSF EPSCoR Project Director and the Nevada State EPSCoR Director. Dr. Dana’s expertise is in surface water hydrology and energy balance of desert, seasonally snow-covered, and polar regions. Present research projects include 1) nutrient and sediment source assessment for TMDL development in the Lake Tahoe and Truckee River Watersheds; (2) hydrochemical modeling in a Lake Tahoe watershed (3) effects of fire on nutrient dynamics in forested watersheds, (4) evaporation from lakes and reservoirs in support of the Truckee River Operating Agreement, and (5) spatially distributed energy balance modeling for climate change detection in Antarctica. Dr. Dana is the Science Advisor to the Truckee River TMDL and Watershed Council, and is a collaborator with the McMurdo Dry Valleys Long Term Ecological Research project.

Lynn Fenstermaker

Dr. Lynn Fenstermaker is the Project Director the Nevada Space Grant Consortium and NASA EPSCoR.  She has experience and interests in the use of remotely sensed data to map, monitor, and assess the effect of environmental stressors on vegetation at small and large scales. She has served as Director of two NSHE climate change experiments; the Nevada Desert FACE (Free Air CO2 Enrichment) Facility and the Mojave Global Change Facility and is currently Director of the NV Climate-ecohydrological Assessment Network (NevCAN). All three of these projects have been examining various aspects of climate change impacts on the Mojave and Great Basin Deserts. Some of her recent research on evapotranspiration has scaled leaf and canopy measurements to plant community and ecosytem levels using remotely sensed data from ground, UAV and satellite sources. Dr. Fenstermaker is the DRI liaison for unmanned aircraft systems (UAS) and has worked with the University of Nevada Las Vegas to develop a Class I UAS platform. This platform has been used for several years to acquire multispectral and color images of research plots to assess climate change treatment effects and basic plant cover information.

Rajat Mehrotra

Dr. Rajat Mehrotra is an Innovation Fellow at the Applied Innovation Center. His primary responsibilities include closely working with AIC director, business and computational lead, and various divisional directors within DRI to establish priorities and develop intellectual properties in the areas of cyber physical systems, high performance computing, and data science. Dr. Mehrotra received his PhD at Mississippi State University in electrical & computer engineering. His research has been aimed to develop state-of-the-art innovative techniques for designing advanced software systems and novel algorithms to solve complex problems of large scale Distributed Computing Systems (DCS) in the discipline of computer engineering. Dr. Mehrotra’s key research interests include performance management and security of DCS, Energy-Aware HPC Systems, Big Data Systems, and cyber physical systems.

Henry Sun

Henry Sun is an Assistant Research Professor Microbiology, Division of Earth and Ecosystem Sciences at the Desert Research Institute, Las Vegas campus. His research areas of interest and expertise is life in extreme environments; endolithic microorganisms in the Antarctic dry valleys, the Atacama Desert, and Death Valley; mineral formations in microbial environments; biological rock weathering, iron isotopic fractionation, and survival and adaptation in endolithic communities; new approaches to planetary life detection; and microbiology of compost tea making and its use as an alternative to fungicide in agriculture and viticulture.

Mary Cablk

Dr. Mary E. Cablk is an expert in detection and systems. In her research she draws upon knowledge from multiple fields such as olfaction, analytical chemistry, learning, cognitive and industrial/occupational psychology, forensics, spatial analysis, pattern analysis, and image processing. Her interests focus on transforming qualitative observation into quantitative data and combining multiple input data types to solve complex challenges related to detection, in a field setting. Her research and expertise has taken her around the world where she has addressed audiences and worked with colleagues on landmine detection, wildlife detection, recovery of human remains, and search and rescue, among others. She works closely with relevant agencies and organizations on development and implementation of credentialing and standards for canine teams in a variety of disciplines. Dr. Cablk has been instrumental in developing a Ph.D. program in forensic anthropology at the University of Nevada Reno, where she is an adjunct professor and mentors graduate students. She is an auxiliary deputy with several county Sheriff Offices in the State of Nevada and is a resource to the State of California Governor’s Office of Emergency Services.

Expert in remote sensing including olfaction and optical. Uses quantitative methods from multiple input data types to conduct scientific analyses related to detection, including spatial analyses.

Vic Etyemezian

Dr. Etyemezian currently holds the position of Research Professor in the Division of Atmospheric Sciences of the Desert Research Institute. He is active in several ongoing research projects including two DoD studies focusing on dust emissions and quantification from military activities, characterization of playa dust emissions from Mojave basins, measurement of emissions of particulate matter from fires in the Mojave and Great Basin Deserts as well as measurement of post-fire aeolian dust emission potential, continued development of a portable wind tunnel-like device for measuring aeolian sediment transport, and identifying controls on wind erosion on Steppe landscapes in Mongolia. Dr. Etyemezian’s research interests and specialties include direct measurement and quantification of atmospheric pollutant emissions, source apportionment, designing research instrumentation, and analysis of spatial data.

Hans Moosmuller

Dr. Moosmüller’s interests include experimental and theoretical research in optical spectroscopy as well as its applications to atmospheric, aerosol, and climate physics. His research focuses on development and application of real time, in situ measurement methods for aerosol light absorption, scattering, extinction, and asymmetry parameter, and new optical remote sensing techniques. These measurement methods are being used for ambient air monitoring and vehicle, fugitive dust, and biomass burning emission studies. His latest research interests are fast, ultra-sensitive measurements of elementary mercury concentrations and fluxes and aerosol morphology and its influence on aerosol optical properties with a focus on fractal-like chain aggregates found in combustion particles. Dr. Moosmüller has also participated in the planning, fieldwork, and data analysis of several major air quality studies. During his first three years at DRI, he was responsible for the airborne ozone lidar research program under a cooperative agreement with the USEPA.

Before joining DRI, Dr. Moosmüller was at Colorado State University where he investigated Brillouin light scattering of spin waves and millimeter-wave effective line widths in thin metal films. He also did research on high-spectral-resolution lidar and coherent light scattering techniques. This work included the development of supersonic flow measurement techniques and the investigations of spectral line shapes. His earlier work at the Ludwigs-Maximilians Universität in Munich, Germany and the Max Planck Institute for Quantum Optics in Garching, Germany focused on laser remote sensing.