Shahab Tayeb

My research interests span communications, complex networks, and network security. I particularly plan to investigate network protocols (e.g. emerging wireless communications standards), big data analytics, the security and privacy of the Internet of Things and Cyber Physical Systems (e.g. Smart City).

Rochelle Hines

Rochelle Hines’ research is aimed at understanding neurodevelopmental processes under normal and pathological conditions, which include autism spectrum disorders, schizophrenia, and developmental epilepsies. In particular, Rochelle’s studies focus on understanding the formation and stabilization of specific synapse types during development, with an emphasis on inhibitory synapses. Rochelle employs molecular genetics, biochemistry, confocal and electron microscopy, behavioral assessments and electroencephalography in mouse models to gain understanding of how inhibitory synapse function and dysfunction during development impacts brain signaling, circuitry and behavior. The ultimate goal of Rochelle’s research is to improve our understanding of neurodevelopmental disorders and to promote novel therapeutic strategies.

Rochelle earned her PhD in Neuroscience at the University of British Columbia in Vancouver, Canada (2009), followed by a postdoctoral fellowship at Tufts University School of Medicine in Boston, MA (2015).

Dustin Hines

The brain operates as a complex orchestration that involves many different cellular players. Dr. Dustin Hines’ research is aimed at understanding the role that glial cells play under normal and pathological conditions, which include neuropsychiatric disorders (depression), traumatic brain injury, stroke and Alzheimer disease. In particular, Dr. Hines researches how astrocytes and microglia cells both talk and listen to neurons. Dr. Hines employs molecular genetics, biochemistry, confocal and two photon microscopy, electrophysiology and behavioral assessments in mouse models to gain understanding of how glia cells impact brain signaling, circuitry and behavior. Dr. Hines’ research ultimately is directed towards understanding how all of the cells of the brain are orchestrated into the precise symphony that we call behavior.

Dale Karas

Dale E. Karas is a UNLV Mechanical Engineering PhD student, specializing in energy-efficient materials science fabrication and testing. His research efforts include optical analyses methods for energy-efficient nanomaterials characterization, computer-aided engineering, and advanced materials manufacturing. Prior to joining the Energy & Environmental Materials Laboratory (EEML) in Fall 2015, he obtained his B.S. in Optical Sciences & Engineering and a B.M. in Music Composition from The University of Arizona, where his work experiences involved remote sensing, machine vision, nanophotonic materials fabrication, and illumination engineering/design. He is president of Étendue: The UNLV Student Optics Chapter, representing student members of SPIE and OSA.

James Navalta

Dr. Navalta’s research focuses on the immune response to exercise (lymphocyte apoptotic and migratory responses), physiological responses to outdoor exercise (hiking and trail running), and the validity of wearable technology.

Yu Kuang

Dr Kuang is currently the Lincy Endowed Assistant Professor and American Board Radiology board certified therapeutic medical physicist in the CAMPEP accredited Medical Physics Program at the University of Nevada, Las Vegas (UNLV). He obtained his Ph.D. in Biomedical Engineering from Case Western Reserve University in 2009 and completed my medical physics postdoctoral training at the University of Michigan in 2010 and Stanford University in 2012. His clinical emphasis is on the routine external beam radiotherapy physics practice and SBRT techniques. His research focuses on the development and clinical integration of novel medical imaging devices with medical linear accelerator and proton therapy device; real-time image guided and adaptive radiation therapy; combining biological- and imaging- biomarkers for early detection of cancers and cancer Interventions; nanotechnology and its application in imaging and therapeutics; molecular imaging for radiation biology and clinical applications.

Brendan Morris

research in computationally efficient intelligent systems. The lab combines computer vision, machine learning, and pattern recognition to develop “real” solutions. Intelligent systems are those that are able to observe the world, learn from these observations, and understand the environment. The real-time systems are designed to operate continuously and robustly through all operating modes.

Research areas of interest include traffic monitoring and pedestrian safety, activity analysis and assessment, visual object recognition, self-driving cars.

Helen J. Wing

Helen J. Wing is an Associate Professor of Molecular Microbiology in the School of Life Sciences at the University of Nevada, Las Vegas. She obtained her Ph.D. in Biochemistry from the University of Birmingham (UK) in 1997, where she studied transcriptional gene regulation in Escherichia coli. She worked with both Prof. Stephen J.W. Busby and Prof. John R. Guest in her first post-doctoral position, where she employed biochemical approaches to study transcription. In 2000, Helen moved to the U.S. to take a post-doctoral position with Marcia B. Goldberg M.D. at Harvard Medical School and Massachusetts General Hospital. It was here that she became interested in the transcriptional regulation of Shigella virulence genes and antimicrobial peptides. She joined the faculty at the University of Nevada, Las Vegas in 2005.
The primary focus of my research laboratory is virulence gene expression in the bacterial pathogen Shigella flexneri, the causal agent of bacillary dysentery, which is estimated to kill over 1 million people each year. All four species of Shigella harbor a large virulence plasmid, which carries most of the genes required to cause disease in the human host, including those required for invasion, type III secretion and actin-based motility, a process that allows bacteria to spread from one human cell to another. We are interested in the environmental cues, the timing and the molecular events that trigger the expression of virulence genes. We are particularly interested in the complex interplay between nucleoid structuring proteins, proteins that facilitate the packaging of DNA into tiny cells, and the transcriptional regulators of virulence in Shigella VirF and VirB.

Patrick Naranjo

Many students enter a university setting with tremendous trepidation about whether they belong, doubts about their chances of success, and a conspicuous lack of knowledge about the college experience.

Patrick Naranjo serves as a mentor for students at UNLV and utilizes his Native American perspective and academic background to provide guidance that can reinforce both the cultural and academic achievements of students at UNLV.

Mr. Naranjo’s goal is to help the University develop cultural and social capacity for teaching Native American and other underrepresented minority students methods to adapt in culturally responsive ways and ultimately succeed in higher education.

Patrick is a member of Santa Clara Pueblo, an expert in Native American cultural property protection, and Resource Coordinator for The Intersection. He earned his B.A. from Haskell Indian Nations University and his M.A. from the University of California, Los Angeles.