Maryam Raeeszadeh-Sarmazdeh

Maryam Raeeszadeh-Sarmazdeh joined the University of Nevada, Reno in July 2019 as an assistant professor. Dr. Sarmazdeh was a senior research fellow in the Department of Cancer Biology at Mayo Clinic, Florida from 2017 to 2019 at Dr. Radisky’s lab, during which her work was focused on engineering novel protein-based therapeutics based on natural enzyme inhibitors. Prior to her appointment at Mayo Clinic, she was a postdoctoral scholar at the Chemical and Biomolecular Engineering Department at the University of Delaware at Prof. Wilfred Chen’s lab for 2.5 years. Dr. Sarmazdeh earned her Ph.D. in Chemical and Biomolecular Engineering from the University of Tennessee at Knoxville under Prof. Eric Boder’s supervision. There, her research was focused on generating site-specific protein immobilization on the surface and protein engineering using yeast surface display and directed evolution.

Pradip Bhowmik

My interests focus on organic and polymer synthesis in general. More specifically, we are interested in developing novel light-emitting and liquid-crystalline polymers for their multitude applications in modern technology including biosensors. In another project, we are developing ionic liquids based on the concept of green chemistry, and liquid-crystalline and light-emitting organic salts to make them functional materials. Carbon nanotube-based composite materials based on ionic polymers are of significant interest in our group. In recent years, we are also actively pursuing for the development of cisplatin analogs for the development cancer therapy.

Dale Karas

Dale E. Karas is a UNLV Mechanical Engineering PhD student, specializing in energy-efficient materials science fabrication and testing. His research efforts include optical analyses methods for energy-efficient nanomaterials characterization, computer-aided engineering, and advanced materials manufacturing. Prior to joining the Energy & Environmental Materials Laboratory (EEML) in Fall 2015, he obtained his B.S. in Optical Sciences & Engineering and a B.M. in Music Composition from The University of Arizona, where his work experiences involved remote sensing, machine vision, nanophotonic materials fabrication, and illumination engineering/design. He is president of Étendue: The UNLV Student Optics Chapter, representing student members of SPIE and OSA.

Brendan Morris

research in computationally efficient intelligent systems. The lab combines computer vision, machine learning, and pattern recognition to develop “real” solutions. Intelligent systems are those that are able to observe the world, learn from these observations, and understand the environment. The real-time systems are designed to operate continuously and robustly through all operating modes.

Research areas of interest include traffic monitoring and pedestrian safety, activity analysis and assessment, visual object recognition, self-driving cars.

Helen J. Wing

Helen J. Wing is an Associate Professor of Molecular Microbiology in the School of Life Sciences at the University of Nevada, Las Vegas. She obtained her Ph.D. in Biochemistry from the University of Birmingham (UK) in 1997, where she studied transcriptional gene regulation in Escherichia coli. She worked with both Prof. Stephen J.W. Busby and Prof. John R. Guest in her first post-doctoral position, where she employed biochemical approaches to study transcription. In 2000, Helen moved to the U.S. to take a post-doctoral position with Marcia B. Goldberg M.D. at Harvard Medical School and Massachusetts General Hospital. It was here that she became interested in the transcriptional regulation of Shigella virulence genes and antimicrobial peptides. She joined the faculty at the University of Nevada, Las Vegas in 2005.
The primary focus of my research laboratory is virulence gene expression in the bacterial pathogen Shigella flexneri, the causal agent of bacillary dysentery, which is estimated to kill over 1 million people each year. All four species of Shigella harbor a large virulence plasmid, which carries most of the genes required to cause disease in the human host, including those required for invasion, type III secretion and actin-based motility, a process that allows bacteria to spread from one human cell to another. We are interested in the environmental cues, the timing and the molecular events that trigger the expression of virulence genes. We are particularly interested in the complex interplay between nucleoid structuring proteins, proteins that facilitate the packaging of DNA into tiny cells, and the transcriptional regulators of virulence in Shigella VirF and VirB.

Brian Frost

The Frost group is interested in the development of new inorganic and organometallic complexes for use in aqueous and biphasic catalysis. Organometallic chemistry and catalysis remain exciting areas of research with many opportunities for fundamental, not to mention pedagogical, contributions. We are interested in the synthesis, structure, and reactivity of inorganic and organometallic complexes with emphasis on those applicable to catalysis. Techniques utilized in our laboratory include, but are not limited to, computational chemistry, multinuclear NMR spectroscopy (1H, 13C, 31P), UV-vis spectroscopy, mass specrometry, X-ray crystallography, and in situ IR using ASI’s ReactIR 4000.TM

Brenda Buck

Dr. Buck’s research focuses on medical geology – in particular how geological materials impact health. Currently, her work focuses on dust and hazards associated with dust exposure including those from asbestiform minerals, arsenic, and other carcinogens. She also performs research to better understand and quantify arid soil processes so that this knowledge can be applied in land use decisions, radionuclide and heavy metal contamination, biologic soil crusts, paleoclimate interpretations, landscape evolution, soil genesis, geomorphic hazards, and other applications.