Pradip Bhowmik

My interests focus on organic and polymer synthesis in general. More specifically, we are interested in developing novel light-emitting and liquid-crystalline polymers for their multitude applications in modern technology including biosensors. In another project, we are developing ionic liquids based on the concept of green chemistry, and liquid-crystalline and light-emitting organic salts to make them functional materials. Carbon nanotube-based composite materials based on ionic polymers are of significant interest in our group. In recent years, we are also actively pursuing for the development of cisplatin analogs for the development cancer therapy.

John Cushman

John Cushman, a Foundation Professor and Director of the Biochemistry Graduate Program in the Department of Biochemistry & Molecular Biology, joined the University of Nevada in Reno, Nevada in 2000. He earned a Ph.D. degree in Microbiology from Rutgers University. He was awarded an NSF postdoctoral fellowship in Plant Biology and conducted research at the University of Arizona on the induction of Crassulacean Acid Metabolism (CAM) by environmental stress. He then moved to Oklahoman State University moving up through the academic ranks until moving to the University of Nevada. Professor Cushman’s research is focused on plant responses to abiotic stress with an emphasis on cold, salinity, drought responses and mechanisms of desiccation tolerance. More recently, his laboratory is seeking to exploit engineered tissue succulence and crassulacean acid metabolism (CAM) to improve the water-use efficiency of potential feedstocks for expansion of food and biofuels production in marginal or abandoned agricultural lands. Until recently, he served as the biomass/biofuels group leader within the UNR Renewable Energy Center. He currently serves as an associate editor of The Plant Journal.

David Alvarez-Ponce

Assistant Professor, University of Nevada, Reno, 2014 – present

Juan de la Cierva Postdoctoral fellow, Consejo Superior de Investigaciones Cientificas, Spain, 2012-2014

Postdoctoral fellow, Trinity College Dublin, 2012

Postdoctoral researcher, National University of Ireland Maynooth, 2010-2012

See our lab webpage for research description: https://genomeevol.wordpress.com

Dev Chidambaram

MER Lab focuses on the design, engineering, research, development and characterization of materials for electrochemical applications in sustainable energy generation and environmental protection. Our focus is on understanding electron transfer processes using spectroscopic techniques (including synchrotron-based techniques), and applying that knowledge to solve interdisciplinary materials and engineering problems. Electrochemistry and spectroscopy can be used to obtain complementary information; electrochemistry assesses the nature and kinetics of an electron transfer reaction and spectroscopy, often used simultaneously with electrochemistry in our research, provides chemical and molecular information of the same reaction. Our research is primarily in the area of materials for energy.

David Hatchett

Dr. Hatchett’s research focuses on the dissolution, coordination, and solubility of f-element species dissolved into ionic liquids. Ionic liquids (ILs) are chemically stable purely ionic solutions at room temperature and they are composed of cation/anion pairs that can be exploited to provide a wide range of tunable physical and chemical properties. Ionic liquids also provide unique solution environments for electrochemical deposition of actinides because traditional side-reactions associated with common working electrodes in aqueous solution are eliminated. The potential windows associated with GC, Pt, and Au working electrodes in IL,   ([Me3BuN] [TFSI] trimethyl-n-butylmethylammonium bis(trifluoromethylsulfonyl)imide provide an absolute potential window of approximately 4.5 V for Pt, 5.0 V for Au, and 6.0 V for GC, which encompass the thermodynamic potentials associated with the oxidation/reduction of actinide species to metal. The electrochemical deposition and formation of actinide thin films at electrode interfaces is the primary goal. The methods that are utilized include the synthesis of actinide TFSI complexes that can be directly dissolved into the ionic liquid [Me3BuN] [TFSI] trimethyl-n-butylmethylammonium bis(trifluoromethylsulfonyl)imide. The goal of the research is to increase the ultimate solubility and to facilitate the in-situ formation of stable, coordinated actinide complexes to provide a more systematic and comprehensive approach to the electrochemical deposition of actinides films. To date we have successfully demonstrated the deposition of U metal from ionic liquid using electrochemical methods. Similar results have been obtained for more electropositive lanthanide species.

Gayle Dana

Dr. Dana is the NSF EPSCoR Project Director and the Nevada State EPSCoR Director. Dr. Dana’s expertise is in surface water hydrology and energy balance of desert, seasonally snow-covered, and polar regions. Present research projects include 1) nutrient and sediment source assessment for TMDL development in the Lake Tahoe and Truckee River Watersheds; (2) hydrochemical modeling in a Lake Tahoe watershed (3) effects of fire on nutrient dynamics in forested watersheds, (4) evaporation from lakes and reservoirs in support of the Truckee River Operating Agreement, and (5) spatially distributed energy balance modeling for climate change detection in Antarctica. Dr. Dana is the Science Advisor to the Truckee River TMDL and Watershed Council, and is a collaborator with the McMurdo Dry Valleys Long Term Ecological Research project.

Jacque Ewing-Taylor

As the Institutional Grants Coordinator, Jacque Ewing-Taylor brings together interdisciplinary research teams to respond to high-profile grant Requests For Proposal (RFPs) and coordinates the support for proposal review.

Ewing-Taylor also holds the position of associate director of the Raggio Research Center for STEM Education. The Raggio Center is focused on the educational aspects of science, technology, engineering and mathematics (STEM) such as professional development for educators and improving instruction for students.

A major function of the center is supporting the evaluation portion of the grant process and this correlates to Ewing-Taylor’s primary research interest—studying professional development strategies that best increase teacher effectiveness. Ewing-Taylor points out that, “kids are natural scientists” and she is focused on finding the best ways to develop those tendencies.

Peter Weisberg

Dr. Weisberg is interested in the causes and consequences of landscape change, including natural disturbances, effects of anthropogenic land use, ungulate-landscape interactions, and invasive species.  His research often considers past landscape change as a guide to understanding present and future condition, and integrates field studies, GIS, remote sensing and simulation modeling.  Ongoing research projects within his lab group address disturbance ecology, woodland expansion, post-fire succession, and ecological restoration in Great Basin pinyon-juniper woodlands; fire history and ecology of mountain big sagebrush communities; fire ecology of the Sierra Nevada (Lake Tahoe Basin); and the ecology of tamarisk invasions along the Colorado River in Grand Canyon.

Hans Moosmuller

Dr. Moosmüller’s interests include experimental and theoretical research in optical spectroscopy as well as its applications to atmospheric, aerosol, and climate physics. His research focuses on development and application of real time, in situ measurement methods for aerosol light absorption, scattering, extinction, and asymmetry parameter, and new optical remote sensing techniques. These measurement methods are being used for ambient air monitoring and vehicle, fugitive dust, and biomass burning emission studies. His latest research interests are fast, ultra-sensitive measurements of elementary mercury concentrations and fluxes and aerosol morphology and its influence on aerosol optical properties with a focus on fractal-like chain aggregates found in combustion particles. Dr. Moosmüller has also participated in the planning, fieldwork, and data analysis of several major air quality studies. During his first three years at DRI, he was responsible for the airborne ozone lidar research program under a cooperative agreement with the USEPA.

Before joining DRI, Dr. Moosmüller was at Colorado State University where he investigated Brillouin light scattering of spin waves and millimeter-wave effective line widths in thin metal films. He also did research on high-spectral-resolution lidar and coherent light scattering techniques. This work included the development of supersonic flow measurement techniques and the investigations of spectral line shapes. His earlier work at the Ludwigs-Maximilians Universität in Munich, Germany and the Max Planck Institute for Quantum Optics in Garching, Germany focused on laser remote sensing.

Charles Coronella

Waste to energy conversion, biomass pre-treatment for bioenergy, applications of fluidization and chemical looping combustion.