Our research revolves around highly reactive organic molecules. These unstable and elusive intermediates, such as carbenes, nitrenes, and biradicals, are especially important in photochemistry, but their chemistry and properties are poorly understood. Moreover, these molecules are related to searches for organic conducting and magnetic materials. Much of the organic synthesis that we carry out involves making previously unknown compounds, and we spend a considerable amount of our time developing new synthetic methods to tackle these challenging molecules. A specialized technique that we use to study reaction intermediates involves matrix isolation photochemistry. In this method, organic molecules are frozen into glasses of inert gas at extremely low temperatures (10 Kelvin). The samples are then irradiated with UV light to generate highly reactive intermediates. The low temperatures and high dilution in inert surroundings protect these otherwise unstable species from reaction. IR and UV spectra of the samples, acquired at low temperature, tell us a great deal about the bonding and structures of the products. Finally, we carry out a variety of ab initio and DFT electronic structure calculations to model the structures, spectra, and electronics of these novel molecules.