Lloyd Stark

The primary theme in my lab is the ecology of vegetative desiccation tolerance in plants. Desiccation tolerance (DT) is the ability of an organism or structure to survive drying out in equilibration with dry air, and among plants is most well developed among the bryophytes. In my lab, various species of mosses are cultured and bred, with experiments on DT normally based on single clonal lines. We are interested in determining the intrinsic ecological strategy of DT employed by a species; this strategy resides along an inducibility gradient, from weakly inducible to nearly constitutive. Experimental topics include the DT of vegetative and reproductive phases, the physiology and timelines of hardening and dehardening phenomena, how different life phases of mosses (shoots, asexual propagules, antheridia, juvenile structures) exhibit variation in response to desiccation stress, and the length of time structures can tolerate continuous desiccation. Specifically, my laboratory is investigating how the three components of desiccation tolerance, (i) the rate of drying, (ii) the duration spent in the dried state, and (iii) the equilibrium relative humidity reached, affect the capacity of a plant to tolerate desiccation. We focus on desert and Mediterranean mosses.

My graduate students are studying (i) the desiccation tolerance in Bryum argenteum life phases and hardening to DT in Physcomitrella and (ii) how the environment within the moss colony compares to the ambient environment, how this potential buffer varies along an elevation gradient in the desert, and including how this phenomenon relates to projected climate change.

Trabia Mohamed

Overview of current research projects:

Optimization Algorithms and their Applications to Mechanical Engineering Design
Finite Element Analysis of Mechanical Components and Systems
Dynamic Analysis and Control of Mechanical Systems with Emphasis on Flexible Robots
Analysis and Design of Robots and Mechanisms
Biomedical applications of mechanical design
Characterization of biomaterials
Shock Transmission
Characterization of Material Properties under Impact Loading.
Fuzzy Logic Control Applications.

Jeffery Shen

Dr. Shen’s research focuses on development of databases and bioinformatics tools for genome analyses and gene annotations, predictions of genes responsive to environmental/developmental cues, and predictions of gene functions (subcellular localization, and protein motifs). Another focus of my research is the molecular mechanism controlling plant responses to abiotic stresses, seed dormancy and germination. He is also interested in the mechanism underlying tissue-specific and developmentally-regulated gene expression.

The recent accomplishment in sequencing the genomes of thousands of organisms, including human being and important crops such as rice, is leading to a revolution in scientific research, medicine discovery, and improvement of the quality of our food. His lab is interested in developing (adopting, modifying, and inventing) bioinformatics tools for genome analyses and gene ontology studies. Gene ontology addresses: Biological Process (Why is this, such as cell enlargement, being done?), Molecular Function (What kind of molecule is this? Enzymes or transcription factors?), and Cellular Component (Where is this located? Nuclei or Mitochondria?).

Brenda Buck

Dr. Buck’s research focuses on medical geology – in particular how geological materials impact health. Currently, her work focuses on dust and hazards associated with dust exposure including those from asbestiform minerals, arsenic, and other carcinogens. She also performs research to better understand and quantify arid soil processes so that this knowledge can be applied in land use decisions, radionuclide and heavy metal contamination, biologic soil crusts, paleoclimate interpretations, landscape evolution, soil genesis, geomorphic hazards, and other applications.

Brian Hedlund

Dr. Brian Hedlund is a Professor in Life Sciences at the University of Nevada, Las Vegas.  Hedlund’s research focuses on the microbiology and biogeochemistry of geothermal ecosystems, the genomic exploration of “microbial dark matter”, and the role of the intestinal microbiome in prevention of Clostridium difficile infection. Dr. Hedlund is editor for Antonie van Leeuwenhoek journal, a member of Bergey’s Manual Trust, and editor for Bergey’s Manual of Systematics of Archaea and Bacteria, the authoritative reference manual for microbial taxonomy.

Dale Devitt

Dr. Dale Devitt is a soil and water scientist who focuses his research on soil plant water relationships in arid environments. Much of his research has addressed osmotic and matric interactions on plants, with special emphasis on irrigated systems with poor quality water. He currently is the UNLV water component lead of the NSF EPSCoR climate change study in which two transects comprised of sophisticated weather stations are being placed on two mountain ranges in Nevada.  He is also the Director of the Center for Urban Water Conservation that conducts both applied and basic research related to urban water related issues. A current study is investigating the fate and transport of pharmaceuticals in turfgrass systems irrigated with recycled water.

David Charlet

Dr. Charlet’s  research concerns the natural history of arid regions. His studies focus on the Great Basin and Mojave Desert, a region that includes most of Nevada and some of each of the surrounding states. Most of his research involves how plants are distributed across landscapes and regions.

Kumud Acharya

Dr. Acharya’s research involves aquatic and biological stoichiometry, the study of balance of energy and multiple chemical elements. He is particularly interested in how human management of watersheds affects aquatic invertebrate community structure in aquatic environments. Aquatic invertebrates face special evolutionary challenges in these systems due to factors such as hydroperiod, flow or anthropogenic effects. My specific studies involve observational and experimental studies at various scales, including laboratory cultures (zooplankton, algal chemostats), short-term field experiments and sustained whole-ecosystem manipulations. His other research interests are nutrient cycling, wastewater treatment systems, groundwater management, and ecological modeling. Recently completed studies include role of zooplankton populations in large river (Ohio River) food webs, impact of changes in hydrological conditions (e.g., excessive rainfall or drought conditions) in riverine biota via changes in nutrient and food conditions.

Lawrence Rudd

Dr. Rudd’s professional interests are in the areas of science education and geomorphology. By following these interests throughout his life, Dr. Rudd has been involved in a delightful combination of learning, researching, and teaching. Regardless of what he is teaching, Dr. Rudd never fails to use science examples and demonstrations to keep learning active. An ardent believer in inquiry-based learning, students in Dr. Rudd’s classes learn science and science teaching methods through active participation in class activities.

Dr. Rudd has wide-ranging experience in education, including 20 years of teaching high school earth science, physics, and geology in Portland, Maine, Pinon, Arizona, and Tucson, Arizona. In Pinon, Arizona Dr. Rudd taught in the first high school built in a remote part of the Navajo nation. Working with diverse student populations is one of Dr. Rudd’s lifelong interests.

In addition to teaching education classes at Nevada State College Dr. Rudd maintains an active interest in the study of landslides and other Earth surface processes and thoroughly enjoys being able to do field work in Southern Nevada and the nearby Colorado Plateau.

Shahram Latifi

Shahram Latifi, an IEEE Fellow, received the Master of Science degree in Electrical Engineering from Fanni, Tehran University, Iran in 1980. He received the Master of Science and the PhD degrees both in Electrical and Computer Engineering from Louisiana State University, Baton Rouge, in 1986 and 1989, respectively. He is currently a Professor of Electrical Engineering at the University of Nevada, Las Vegas. Dr. Latifi is the director of the Center for Information and Communication Technology (CICT) at UNLV. He has designed and taught graduate courses on Bio-Surveillance, Image Processing, Computer Networks, Fault Tolerant Computing, and Data Compression in the past twenty years. He has given seminars on the aforementioned topics all over the world. He has authored over 200 technical articles in the areas of image processing, biosurveillance, biometrics, document analysis, computer networks, fault tolerant computing, parallel processing, and data compression. His research has been funded by NSF, NASA, DOE, Boeing, Lockheed and Cray Inc. Dr. Latifi was an Associate Editor of the IEEE Transactions on Computers (1999-2006) and Co-founder and General Chair of the IEEE Int’l Conf. on Information Technology. He is also a Registered Professional Engineer in the State of Nevada.