Ehsan Vahidi

Dr. Ehsan Vahidi is an interdisciplinary researcher who has crossed traditional boundaries between metallurgical engineering and sustainability sciences. His research takes fundamental environmental engineering and translates this into applied settings, primarily in the mining and metallurgical industries. Dr. Vahidi received his B.Sc. and M.Sc. degrees in Materials and Metallurgical Engineering from Sharif University of Technology and the University of Tehran, respectively. After earning his second master’s degree in Environmental Engineering from the University of South Florida, he obtained his Ph.D. from Purdue University in Environmental & Ecological Engineering. Prior to joining UNR as an Assistant Professor in 2020, Dr. Vahidi was a Postdoctoral Associate at Massachusetts Institute of Technology. 

Cory Rusinek

Professor Rusinek is interested in electroanalytical chemistry, sensor development, and materials technology. This includes development in both biological and environmental sensing where applications in neurochemical detection, wearable sensors, and environmental monitoring coalesce for tangible impact on society. Prof. Rusinek is also interested in electrochemical methods for fundamental understanding of molten salt chemistry. In Prof. Rusinek’s group, students are exposed to a multi-disciplinary environment, pulling from knowledge in chemistry, electrochemistry, chemical engineering, and materials science.

Marian Berryhill

My research falls in the domain of cognitive neuroscience. I study how we hold on to a few items in working memory and use them for immediate task demands. My lab investigates what factors matter in getting information into working memory, how we maintain and manipulate information, and how well we retrieve it. For example, we are currently investigating the consequences of familiar and unfamiliar distractor items on older adults’ working memory performance. We use a range of experimental techniques in human participants, some with brain lesions. These include fMRI, fNIRS, tDCS/tACS, and HD-EEG.

Samuel Odoh

My research interests are in theoretical/computational chemistry approaches to explain the properties of materials and to predict materials with better performance. I have experience using density functional theory approaches (DFT), ab initio quantum-chemical methods as well as molecular dynamics (MD) approaches . Examples of materials that I have worked on in the past are: proteins, porous materials (like zeolites and metal-organic frameworks), solids (like Mott insulators, metal oxides, metal oxide surfaces), liquids and
heavy elements.

Brendan Morris

research in computationally efficient intelligent systems. The lab combines computer vision, machine learning, and pattern recognition to develop “real” solutions. Intelligent systems are those that are able to observe the world, learn from these observations, and understand the environment. The real-time systems are designed to operate continuously and robustly through all operating modes.

Research areas of interest include traffic monitoring and pedestrian safety, activity analysis and assessment, visual object recognition, self-driving cars.

Trabia Mohamed

Overview of current research projects:

Optimization Algorithms and their Applications to Mechanical Engineering Design
Finite Element Analysis of Mechanical Components and Systems
Dynamic Analysis and Control of Mechanical Systems with Emphasis on Flexible Robots
Analysis and Design of Robots and Mechanisms
Biomedical applications of mechanical design
Characterization of biomaterials
Shock Transmission
Characterization of Material Properties under Impact Loading.
Fuzzy Logic Control Applications.