Christopher Morgan

My research focuses on the hunter-gatherer archaeology of the American West, China, Mongolia, and the southern Andes, with an emphasis on behavioral adaptations to high-altitude, desert, and other marginal environments. I am particularly interested in the ways mobility, storage, and settlement patterns articulate with paleoenvironmental change and the evolution of different types of hunter-gatherer sociocultural organization.

In the America West, I study the archaeology of Numic-speaking peoples across and beyond the Great Basin, the evolution of Archaic lifeways, and the different ways hunter-gatherers in the region exploited mountain environments. In China, I focus on more fundamental evolutionary questions: Lower to Upper Paleolithic transitions, the arrival or evolution of modern humans and human behavior, and the forager to farmer sequence between the Yellow and Wei rivers. In Mongolia, I collaborats with the National Museum of Mongolia on projects that track the origins of pastoral economies and the northeast Asian microblade adaptation. In the southern Andes, I work on collaborative projects with the National Scientific and Technical Research Council of Argentina that investigate the ways the region’s hunter-gatherers adapted to high altitude settings.

Anne Leonard

We study plant-pollinator interactions from nutritional and cognitive perspectives. We are interested in understanding how bees evaluate, learn about, and remember flowers. Likewise, we are interested in how the nutritional value of the nectar and pollen plants offer bees structures interactions with pollinators and co-flowering members of plant communities. An interest in understanding how human activities can perturb these interactions drives a parallel line of research, on how sublethal exposure to pesticides can affect bee behavior, sensory systems, and health. We address these questions using a combination of lab-based and field studies, often on bumblebees, at Sierra Nevada and Great Basin field sites.

Nicholas Irwin

I am an applied microeconomist by training with an emphasis in environmental economics, urban economics, and real estate. The overarching goal of my research is understanding how individual and household choices affect economic outcomes along two distinct veins. The first explores the decision-making of homeowners and their choice to make housing investments in response to neighborhood spillovers or modify their household resource utilization. The second explores individual responses to information shocks related to environmental hazards or changes in public goods. In this area, my research incorporates novel components of housing market dynamics into traditional hedonic analysis which, if ignored, will lead to a consistent underestimation of the true impact of pollution or changes to amenities. I am also interested in supply-side housing market response to environmental hazards, an oft-ignored topic despite its economic importance.

Jennifer Rennels

Jennifer Rennels’ research focuses on face perception/processing and development of appearance-based biases (e.g., positive and negative evaluations based on masculinity/femininity, attractiveness, sex, and race). She examines the cues individuals attend to when perceiving faces, how facial appearance impacts judgments about an individual, and how individual differences and situational factors influence perception and processing. In related work, she investigates the origins of biases, why biases are maintained, and the consequences of biases. Her research primarily involves working with infants so as to understand rudiments of face processing abilities and biases, but she also includes older children and adults in her research to study developmental trajectories and developmental differences in face perception and processing.

Carl Haster

I am an Assistant Professor of Astrophysics in the Department of Physics & Astronomy and the Nevada Center for Astrophysics at University of Nevada, Las Vegas. Before this, I was a Postdoctoral Associate at the LIGO Laboratory and the Kavli Institute for Astrophysics and Space Research at MIT, a CITA Postdoctoral Fellow at Canadian Institute for Theoretical Astrophysics a PhD student at University of Birmingham and a MPhys student at University of Manchester.

My main research interests are all the exciting things we can learn about the extremes of our Universe through observations of Gravitational Waves (for example using the current LIGO, or future Cosmic Explorer, instruments). I am particularly interested in finding satisfactory robust connections between the observed population of compact objects, mainly black holes and neutron stars, and the astrophysical processes through which these objects are formed and evolve. I am also interested in exploring matter at its extremes, like what can be found in coalescing neutron star binaries, how this can be observed using as many astrophysical messengers as possible and help us find the best model for the Neutron Star Equation of State. Finally, I enjoy working on the inference methods used to analyse these gravitational wave signals, in order to improve their speed, fidelity and robustness. This will in turn be crucial for using these observations for precision tests of General Relativity as our preferred theory of gravitation, as otherwise it’s easy to confuse a claimed beyondGR detection caused by a not-accurate-enough analysis.

Robert Renden

We study the mechanisms that permit rapid and sustained synaptic transmission in the mouse brain, predominantly using the calyx of Held as a model synapse. This giant glutamatergic synapse in the auditory brainstem has a number of experimental advantages that permit us to trace the fundamental mechanisms that underlie chemical neurotransmission. We apply a variety of genetic and viral transduction techniques to disrupt presynaptic function at the calyx through transgenic mouse models, and expression in neuronal populations using adeno-associated virus (AAV). We use whole cell electrophysiology to record activity from the presynaptic or postsynaptic compartments (and sometimes both!) We complement these recordings with the use of use organic and genetically-encoded probes for functional imaging of essential messengers (Ca2+ ATP, and others).

Jared Bruce

Photochemistry is central to many aspects of energy conversion, atmospheric chemistry, corrosion, and catalysis. The ability to drive chemical reactions selectively and efficiently on surfaces with light remains a significant challenge, as these transformations are often dependent on the structure and chemical nature of the material surface. Furthermore, as more complex, multi-component materials are used in photochemical applications, robust model systems are needed to understand how synergistic properties impact these transformations.

The Bruce Group focuses on processes related to the conversion of light to drive chemical reactions at different interfaces. Our group are world experts in surface chemistry using ultrahigh vacuum, near ambient pressure, and operando spectroscopy/microscopy techniques. This, coupled with electrochemical and photoelectrochemical characterization, enables a unique insight into photochemical conversions at gas-liquid, liquid-solid, and solid-gas interfaces.

Daniel Trugman

Dr. Trugman’s research focuses on developing and applying new techniques to analyze large datasets of seismic waveforms in order to better understand earthquake rupture processes and their relation to seismic hazards. His research team at the University is broadly interested in leveraging concepts from big data and scientific machine learning alongside high-fidelity physical modeling in order to advance earthquake science.

Topics of particular interest include to Dr. Trugman’s research team include:
– Nevada seismicity, tectonics, and earthquake sequences
– Earthquake source properties (magnitude, stress drop, and radiated energy estimates)
– Earthquake nucleation and rupture dynamics
– Stress transfer and earthquake triggering
– Earthquake early warning systems
– Ground motion prediction and hazard analysis
– Forensic seismology and nuclear monitoring

Elnaz Seylabi

I am an assistant professor in the Civil and Environmental Engineering Department at the University of Nevada Reno. Before joining UNR in 2019, I was a postdoctoral scholar at the Mechanical and Civil Engineering Department at the California Institute of Technology (2017-2019). I received a Ph.D. in Civil Engineering (with a major in Structural Mechanics and a minor in Applied Mathematics) from the University of California Los Angeles, an M.Sc. in Earthquake Engineering, and a B.Sc. in Civil Engineering from the Sharif University of Technology. My research focuses on risk-informed engineering of geostructural systems, near-surface characterization, and computational methods for efficient performance-based engineering and uncertainty quantification.