Cory Rusinek

Professor Rusinek is interested in electroanalytical chemistry, sensor development, and materials technology. This includes development in both biological and environmental sensing where applications in neurochemical detection, wearable sensors, and environmental monitoring coalesce for tangible impact on society. Prof. Rusinek is also interested in electrochemical materials development for energy applications in CO2 reduction and nuclear power production. In Prof. Rusinek’s group, students are exposed to a multi-disciplinary environment, pulling from knowledge in chemistry, electrochemistry, chemical engineering, and materials science.

John Cushman

John Cushman, a Foundation Professor and Director of the Biochemistry Graduate Program in the Department of Biochemistry & Molecular Biology, joined the University of Nevada in Reno, Nevada in 2000. He earned a Ph.D. degree in Microbiology from Rutgers University. He was awarded an NSF postdoctoral fellowship in Plant Biology and conducted research at the University of Arizona on the induction of Crassulacean Acid Metabolism (CAM) by environmental stress. He then moved to Oklahoman State University moving up through the academic ranks until moving to the University of Nevada. Professor Cushman’s research is focused on plant responses to abiotic stress with an emphasis on cold, salinity, drought responses and mechanisms of desiccation tolerance. More recently, his laboratory is seeking to exploit engineered tissue succulence and crassulacean acid metabolism (CAM) to improve the water-use efficiency of potential feedstocks for expansion of food and biofuels production in marginal or abandoned agricultural lands. Until recently, he served as the biomass/biofuels group leader within the UNR Renewable Energy Center. He currently serves as an associate editor of The Plant Journal.

Helen J. Wing

Helen J. Wing is an Associate Professor of Molecular Microbiology in the School of Life Sciences at the University of Nevada, Las Vegas. She obtained her Ph.D. in Biochemistry from the University of Birmingham (UK) in 1997, where she studied transcriptional gene regulation in Escherichia coli. She worked with both Prof. Stephen J.W. Busby and Prof. John R. Guest in her first post-doctoral position, where she employed biochemical approaches to study transcription. In 2000, Helen moved to the U.S. to take a post-doctoral position with Marcia B. Goldberg M.D. at Harvard Medical School and Massachusetts General Hospital. It was here that she became interested in the transcriptional regulation of Shigella virulence genes and antimicrobial peptides. She joined the faculty at the University of Nevada, Las Vegas in 2005.
The primary focus of my research laboratory is virulence gene expression in the bacterial pathogen Shigella flexneri, the causal agent of bacillary dysentery, which is estimated to kill over 1 million people each year. All four species of Shigella harbor a large virulence plasmid, which carries most of the genes required to cause disease in the human host, including those required for invasion, type III secretion and actin-based motility, a process that allows bacteria to spread from one human cell to another. We are interested in the environmental cues, the timing and the molecular events that trigger the expression of virulence genes. We are particularly interested in the complex interplay between nucleoid structuring proteins, proteins that facilitate the packaging of DNA into tiny cells, and the transcriptional regulators of virulence in Shigella VirF and VirB.

Heather Holmes

Dr. Holmes is an Assistant Professor, Physics in the Nevada Advanced Autonomous Systems Innovation Center at the University of Nevada, Reno.  Her PhD research focus was experimental investigations to study air pollution, turbulence, meteorology and chemistry in the atmospheric boundary layer.  Following her PhD, two visiting researcher positions took her to Asia and Europe where she studied airborne pollen collection and wind energy.  She completed her postdoctoral training at Georgia Tech as part of the Southeastern Center for Air Pollution and Epidemiology (SCAPE, www.scape.gatech.edu) working with engineers, atmospheric scientists and epidemiologists to characterize air pollution mixtures and their associated health effects.  As part of SCAPE, her research focus was to analyze air pollution and air quality modeling data to better understand and quantify how emission sources combine to impact air quality and provide air quality metrics to epidemiologists for use in health assessments.  Her current research interests incorporate numerical weather prediction and chemical transport modeling with field experiments to investigate pollutant accumulation, transport and mixing and provide data for health and public policy assessments.