Jesse Krause

Summary:
Dr. Krause earned a Bachelor of Science in Biology at Sonoma State University in 2007. He did his senior thesis with Dr. Daniel E. Crocker investigating the hormonal regulation of sodium balance in lactating and fasting elephant seals. In 2008, Dr. Krause joined the laboratory of John C. Wingfield at the University of California, Davis, and focused on the endocrine regulation of stress and reproduction in songbirds. After completing his Ph.D. he continued as a postdoctoral researcher in the laboratory of Dr. John C. Wingfield for one year until a collaborative grant with Dr. Simone L. Meddle, at the Roslin Institute, University of Edinburgh, was funded in 2016. Between 2016 and 2018, Dr. Krause split his time between the University of California, Davis, and the Roslin Institute studying seasonal changes in gene expression associated with stress and reproduction. Dr. Krause was hired by the University of Nevada, Reno, Biology Department, in 2018 as a teaching assistant professor. Dr. Krause enjoys teaching using the dry erase board. He remains active in research and has several ongoing collaborations.

Research interests:
Dr. Krause is classically trained as a physiologist although his interests have broadened over his career to include ecology and behavior. He is particularly interested in how organisms integrate environmental information to control the expression and progression through life history stages (ie migration, breeding, molt, etc). As a field biologist working in California and Alaska, he has come to appreciate that no discipline within biology it is impossible to separate physiology from ecology and behavior. As an endocrinologist, he is particularly interested in how physiology and behavior are controlled through endocrine signaling mechanisms. Dr. Krause's Ph.D. and postdoctoral research focused on the regulation of stress and reproduction in White-crowned sparrow (Zonotrichia leucophrys) and Lapland longspurs (Calcarius lapponicus). Birds, as with many other species across a broad range of taxa, use the endocrine system to appropriately time reproduction while dealing with environmental challenges (predation, storms, food shortages, etc). The importance of the interplay between these two systems is becoming more evident as animals deal with a changing environment either through climate change or encroachment by urbanization. Seasonally breeding animals are under a strong selective pressure to breed at the appropriate time of year to ensure high fecundity. This has resulted in selection and utilization of key environmental signals, such as photoperiod, to control endocrine signaling cascades for various physiological processes including reproduction. However, environmental stressors can impair the reproductive axis through the secretion of the stress hormone corticosterone. Dr. Krause's Ph.D. and postdoctoral research have focused on the regulation of stress and reproduction by investigating plasma levels of hormone and tissue expression of receptors and steroid metabolizing enzymes.

Meeghan Gray

My research interests have focused on the behavioral ecology of large mammals, particularly the interactions between males and females, especially in the context of sex and reproduction. I have always been fascinated with why individuals mate with certain individuals and how those decisions impact levels of parental investment, offspring survival, and future conflict between the sexes. The majority of my research has stemmed from management based projects that I use to examine major themes in behavioral ecology. Currently, I am studying bobcat health and presence in suburban West Reno.

Lloyd Stark

The primary theme in my lab is the ecology of vegetative desiccation tolerance in plants. Desiccation tolerance (DT) is the ability of an organism or structure to survive drying out in equilibration with dry air, and among plants is most well developed among the bryophytes. In my lab, various species of mosses are cultured and bred, with experiments on DT normally based on single clonal lines. We are interested in determining the intrinsic ecological strategy of DT employed by a species; this strategy resides along an inducibility gradient, from weakly inducible to nearly constitutive. Experimental topics include the DT of vegetative and reproductive phases, the physiology and timelines of hardening and dehardening phenomena, how different life phases of mosses (shoots, asexual propagules, antheridia, juvenile structures) exhibit variation in response to desiccation stress, and the length of time structures can tolerate continuous desiccation. Specifically, my laboratory is investigating how the three components of desiccation tolerance, (i) the rate of drying, (ii) the duration spent in the dried state, and (iii) the equilibrium relative humidity reached, affect the capacity of a plant to tolerate desiccation. We focus on desert and Mediterranean mosses.

My graduate students are studying (i) the desiccation tolerance in Bryum argenteum life phases and hardening to DT in Physcomitrella and (ii) how the environment within the moss colony compares to the ambient environment, how this potential buffer varies along an elevation gradient in the desert, and including how this phenomenon relates to projected climate change.