Daniel Trugman

Dr. Trugman’s research focuses on developing and applying new techniques to analyze large datasets of seismic waveforms in order to better understand earthquake rupture processes and their relation to seismic hazards. His research team at the University is broadly interested in leveraging concepts from big data and scientific machine learning alongside high-fidelity physical modeling in order to advance earthquake science.

Topics of particular interest include to Dr. Trugman’s research team include:
– Nevada seismicity, tectonics, and earthquake sequences
– Earthquake source properties (magnitude, stress drop, and radiated energy estimates)
– Earthquake nucleation and rupture dynamics
– Stress transfer and earthquake triggering
– Earthquake early warning systems
– Ground motion prediction and hazard analysis
– Forensic seismology and nuclear monitoring

John Louie

Dr. John N. Louie, Professor at the Nevada Seismological Laboratory at the University of Nevada, Reno, has over forty years of university teaching and research experience in geophysics and seismology. He has published with students several well-cited papers on innovations in seismic imaging of earthquake faults in California, Nevada, and New Zealand. Over the last 25 years, Dr. Louie has developed a faster and more efficient site-assessment survey technique for earthquake-hazard evaluation, Refraction Microtremor. Research on this technology continues, measuring thousands of sites in California, Nevada, and New Zealand; and on using geological and geotechnical measurements to predict earthquake shaking from 3D wave physics, and improve communities’ resilience to disasters.

El Hachemi Bouali

I am an applied geologist by training and an opportunistic scientist in practice, meaning I love geology but am interested in many areas of the natural sciences. I can abbreviate my research focus with the acronym GASP: geophysical and surface processes.

Geophysical Processes. I use geophysical and remote sensing instruments to study changes on the Earth’s surface and within the shallow subsurface. I will be starting a research project (early 2023) on utilizing passive seismic methods to map bedrock depth (or sediment thickness) as an indirect approach to identify buried faults and to study extensional tectonics of the Las Vegas valley.

Surface Processes. I use an interdisciplinary approach to study our dynamic Earth. A major research project I am currently working on (2021-future) is titled Analyses of spring water chemistry and microbiology in the Spring Mountains, Nevada. I use field and laboratory methods across multiple disciplines (geology, biology, and chemistry) to quantify physical properties of high-elevation springs and analyze microbial communities found in these springs.

I teach courses that are required or electives for the BS in Environmental & Resource Science and BS in Biology. I teach the following courses at Nevada State:

–GEOL 101A/L Exploring Planet Earth Lecture and Lab
–GEOL 333 Principles of Geomorphology
–GEOL 405 Geology of the National Parks
–NRES 322 Soils
–NRES 467 Regional and Global Issues in Environmental Science
–BIOL/ENV 494 Biology and Environmental Science Colloquium

I received a Ph.D. in Geology from Michigan Technological University, an MS in Geosciences and BS in Geophysics from Western Michigan University, and an AS from Kalamazoo Valley Community College. I was the Postdoctoral Fellow in Environmental Science at Trinity College (Hartford, CT) and a NASA Earth and Space Science Fellow while earning my Ph.D. I have also worked as a Geological Mapping Technician for two summers at Pictured Rocks National Lakeshore in the Upper Peninsula of Michigan where I assisted with the creation of ten surficial geology quadrangle maps by acquiring near-surface geophysical data and auger samples.