Nora Caberoy

Dr. Nora Caberoy’s research is on eye diseases. Specifically, she studies the retina (the thin, multi-layer, light-sensitive tissue that is found all the way at the back of the eye) and the role of retinal pigment epithelium phagocytosis in photoreceptor death that leads to retinal dysfunction and then blindness. By identifying factors and pathways associated with damage of the retina, she hopes to be able to develop ways to prevent or treat blindness.

In parallel with Caberoy’s work in the eye, she also identifies and characterizes factors that contribute to the development of obesity with the hope of developing therapeutic strategies to prevent or treat obesity. She explores the physiological and pathological roles of tubby protein in the development of obesity.

Grant Matick

To build a brain, the embryo must produce a spatially organized array of a vast number of neurons, then interconnect them. Our research group uses genetic and molecular approaches in mouse and chick embryos to investigate the functions of specific genes in brain development. This research has implications for the molecular therapy of neurological disease and injury, and is funded by the National Institutes of Health.

Our current research is on the migration of neurons and their axons through the developing brain. We investigate how molecular signals guide axons to migrate precisely long distances on longitudinal pathways, how cranial nerves grow out to connect to muscles, and also how neuron cell bodies settle in specific positions. Our studies focus on a system of signals, the Slit/Robo repellents and the Netrin attractants, to understand the mechanisms by which opposing signals are integrated by neurons.

Frank van Breukelen

Dr. van Breukelen is interested in the mechanisms that allow animals to survive in harsh environments.