Azimrh Zare Harofteh

Dr. Zare Harofteh's research spans both fundamental and applied topics, including the development of air quality prediction models, atmospheric chemistry (such as the evolution of chemical composition in wildfire plumes), fire process modeling, fire-atmosphere interactions, and environmental justice in terms of air pollution exposure. She utilizes a combination of field data, remote sensing, modeling, and machine learning techniques in her work. Before joining DRI, she spent five years as a postdoctoral researcher at the University of California, Berkeley, and the EPA Research Office. In these positions, she developed, evaluated, and integrated gas- and aerosol-phase chemical mechanisms into atmospheric chemical transport models, which have been applied in studies such as assessing the impact of emission reduction policies on atmospheric chemistry. Her other research interests include the interactions between biogenic emissions, air quality, and climate change, which she explored during her PhD research at Aarhus University in Denmark.

Dr. Zare Harofteh also holds a faculty appointment with the Atmospheric Science Graduate Program at the University of Nevada, Reno, where she contributes to teaching and mentoring students.

David Mitchell

Dr. David Mitchell received a Ph.D. from the University of Nevada, USA, in 1995 and has contributed to the peer-reviewed literature in the atmospheric science sub-disciplines of cloud physics, radiation, remote sensing and climate dynamics. He and his students developed a theory describing the evolution of the North American monsoon that is now widely accepted, and he developed a treatment of ice cloud radiative properties that is currently used in the NCAR climate models. He and Dr. Anne Garnier developed and published (in 2016) the first satellite remote sensing retrieval for ice particle concentrations and later discovered the percentage of cirrus clouds strongly affected by homogeneous ice nucleation (globally in terms of latitude and season). He published the first paper on the climate intervention method known as “cirrus cloud thinning” (CCT) that can be verified using the above satellite remote sensing method (should it ever be deployed). He has given 40 invited talks at universities and research institutes in the USA, the U.K., Germany, Mexico, Norway, France, and Sweden.

Sungju Moon

My research interest lies in applications of dynamical systems, more specifically, the study of nonlinear ODEs to model complex systems. Of particular interest is the Lorenz system, well-known for the so-called “butterfly effect”. Broadly, I am open to new ideas for applying dynamical systems to model real world scenarios.

My PhD project was concerned with deriving and exploring chaotic properties of new high-dimensional extensions of the Lorenz system, viewed as closer approximations of the Boussinesq fluid model for Rayleigh-Benard convection. Beyond the initial motivation for considering additional physical contexts under specific scenarios such as the presence of vertical gradient in scalar concentrations as in atmospheric aerosols or ocean water salinity, this project evolved into a quest to answer more fundamental questions about the chaotic nature of weather and fluid systems, leading to the derivation of a generalized high-dimensional Lorenz systems capable of furnishing an ODE system that represents a fluid system with arbitrarily high harmonic orders. Some interesting phenomena discovered along the way include a novel type of chaotic attractor, coexisting attractors, and synchronization of chaos, which led to some immediate applications in different fields such as image encryption technology and data assimilation in the context of numerical weather prediction. My ongoing research explores how different network configurations could change the synchronization properties, with certain configurations more prone to rare catastrophic events than others.

As a member of the Mathematics Public Health (MfPH) network at The Fields Institute, I had the opportunity to work on agent-based models for epidemic curves of a rapidly spreading infectious disease such as COVID-19. I focused on developing co-circulation models having two or more viral strains, utilizing both the traditional ODE-based approach (SIR) and the agent-based modeling (ABM) approach. My ongoing research in this area is focused on exploring how the infection network heterogeneity affects the epidemic curves and whether these effects can better be simulated using ABMs rather than ODEs.

Vic Etyemezian

Dr. Etyemezian currently holds the position of Research Professor in the Division of Atmospheric Sciences of the Desert Research Institute. He is active in several ongoing research projects including two DoD studies focusing on dust emissions and quantification from military activities, characterization of playa dust emissions from Mojave basins, measurement of emissions of particulate matter from fires in the Mojave and Great Basin Deserts as well as measurement of post-fire aeolian dust emission potential, continued development of a portable wind tunnel-like device for measuring aeolian sediment transport, and identifying controls on wind erosion on Steppe landscapes in Mongolia. Dr. Etyemezian’s research interests and specialties include direct measurement and quantification of atmospheric pollutant emissions, source apportionment, designing research instrumentation, and analysis of spatial data.

Hans Moosmuller

Dr. Moosmüller’s interests include experimental and theoretical research in optical spectroscopy as well as its applications to atmospheric, aerosol, and climate physics. His research focuses on development and application of real time, in situ measurement methods for aerosol light absorption, scattering, extinction, and asymmetry parameter, and new optical remote sensing techniques. These measurement methods are being used for ambient air monitoring and vehicle, fugitive dust, and biomass burning emission studies. His latest research interests are fast, ultra-sensitive measurements of elementary mercury concentrations and fluxes and aerosol morphology and its influence on aerosol optical properties with a focus on fractal-like chain aggregates found in combustion particles. Dr. Moosmüller has also participated in the planning, fieldwork, and data analysis of several major air quality studies. During his first three years at DRI, he was responsible for the airborne ozone lidar research program under a cooperative agreement with the USEPA.

Before joining DRI, Dr. Moosmüller was at Colorado State University where he investigated Brillouin light scattering of spin waves and millimeter-wave effective line widths in thin metal films. He also did research on high-spectral-resolution lidar and coherent light scattering techniques. This work included the development of supersonic flow measurement techniques and the investigations of spectral line shapes. His earlier work at the Ludwigs-Maximilians Universität in Munich, Germany and the Max Planck Institute for Quantum Optics in Garching, Germany focused on laser remote sensing.

Eric Wilcox

Dr. Wilcox’s research addresses the interactions among aerosols, clouds, and precipitation towards a goal of improved understanding of precipitation, cloud variability and radiative forcing of climate at regional scales. This work relies on satellite and in-situ observations, as well as simulations with numerical models of the atmosphere and climate.

Dr. Wilcox manages DRI’s climate modeling group, which implements a wide range of numerical models, including fine-resolution atmospheric models for regional climate studies and applied research in water resources and renewable energy projects, air quality and chemistry models, and global coupled ocean/atmosphere climate models.

Dr. Wilcox teaches Atmospheric Physics (ATMS 411/611) and Atmospheric Modeling (ATMS 746) at University of Nevada, Reno. He is an associate editor of the Journal of the Atmospheric Sciences, an associate director of the Nevada NASA Space Grant Consortium for DRI, and he serves as a member representative to the University Corporation for Atmospheric Research (UCAR) on behalf of the Nevada System of Higher Education.

Gannet Hallar

Dr. Hallar is an Assistant Research Professor with the Desert Research Institute, she directs Storm Peak Laboratory, a high elevation atmospheric science facility in Steamboat Springs, Colorado. This laboratory has undergone major changes under her leadership including new instrumentation, new research foci, new field courses, and a significant building expansion. Currently, at Storm Peak Laboratory, Dr. Hallar also work as adjunct faculty for the University of Nevada, Reno and teaches a graduate level field course in Mountain Meteorology.

The overarching theme of Dr. Hallar’s research is using high quality measurements of trace gases, aerosol physical and chemical properties, and cloud microphysics to understand connections between the biosphere, atmosphere, and climate, along with the impact of anthropogenic emissions on these connections. More specifically, currently her research uses high elevation sites, combined with airborne measurements, to study the formation processes of Cloud Condensation Nuclei (CCN) and Ice Nuclei (IN) and how differing formation processes impact mixed-phase cloud microphysics. This research topic is stemmed in many potential formation mechanisms of aerosols, including nucleation, secondary organic aerosols, and primary biological aerosol particles (PBAP’s).

William Arnott

Dr. Arnott develops and deploys photoacoustic instruments for measurement of black carbon emission from vehicles in source sampling, and in ambient air quality studies. These measurements are often combined with other real time particulate emission measurements for the larger purpose of establishing detailed knowledge of the conditions giving rise to most of the black carbon and particulate emission to the atmosphere, and their environmental impacts. He teaches courses in the Atmospheric Sciences Program and Physics Department at the University of Nevada, Reno.