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Neonicotinoid pesticides can impair bees’ ability to learn and remember
information about flowers, critical for effective foraging. Although these
effects on cognition may contribute to broader effects on health and perform-
ance, to date they have largely been assayed in simplified protocols that
consider learning in a single sensory modality, usually olfaction. Given
that real flowers display a variety of potentially useful signals, we assessed
the effects of acute neonicotinoid exposure on multimodal learning in free-
flying bumblebees. We found that neonicotinoid consumption differentially
impacted learning of floral stimuli, impairing scent, but not colour, learning.
These findings raise questions about the mechanisms by which pesticides
might differentially impair sensory systems, with implications for how
neonicotinoids affect multiple aspects of bee ecology.
1. Introduction
Honeybees (Apis) and bumblebees (Bombus) are ecologically and agriculturally
critical pollinators that also serve as important model systems for the study of
cognition [1]. As generalist foragers, individuals visit a variety of flower types
and rapidly learn associations between floral cues and rewards such as nectar
[2–5] and pollen [6–8]. This ability to learn associations is an important
aspect of foraging performance, potentially linked to fitness ([9], but see [10]).
Stressors such as pathogens, poor nutrition and pesticide exposure can have
negative effects on bee learning [11–15], and thus have been highlighted as
being potentially detrimental to foraging efficiency and colony growth [16].

Of these stressors, neonicotinoid pesticides have been an area of recent focus
for their impacts on bee cognition. These pesticides are widely used (e.g. in the
USA and China [17,18]), where crops can be seed- or spray-treated. As systemic
pesticides, neonicotinoids are expressed in plants’ nectar and pollen, where
foraging bees can ingest them [19]. While many studies have found detrimental
effects of these pesticides on learning (e.g. [16,20], reviewed in [14]), others have
found impairment to other components of foraging behaviour such as
motivation, but not learning per se [21,22].

Nearly all of the previous work on how neonicotinoids impact cognition
addresses learning in a single sensory modality (usually olfaction: see Fig. 1
in [21]). However, these single-modality tests are not representative of natural
foraging scenarios, since bees use multiple sensory modalities to locate and
learn about flowers [23]. For example, components of multimodal floral dis-
plays can have interactive effects on bee learning [24], and floral colour can
compensate in scenarios where scent is less useful [25]. The single-modality
focus of pesticide research may explain discrepancies in recent reports of neoni-
cotinoids’ impact on bee foraging [21]. Specifically, where studies have found
neonicotinoid-induced learning impairment, they have generally addressed olfac-
tory learning (e.g. [16,20,26–28]), while studies on visual learning have found
either no effects [21,22], or effects consistent with other explanations [29].
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However, these discrepancies could also be explained by differ-
ences in training protocol: olfactory learning is usually studied
using harnessed bees in the proboscis extension response (PER)
protocol [30,31], whereas visual learning is more commonly
studied using free-flying bees. Thus, addressing whether
impairment from neonicotinoids might be modality-specific
requires learning be measured under the same conditions.

To explore whether bees’ olfactory and visual learning
might be differentially impaired by a neonicotinoid, we
assessed the effects of imidacloprid on multimodal learning
in free-flying bumblebees, Bombus impatiens. We trained indi-
viduals to discriminate between flowers that differed in scent
and colour cues before measuring performance in a test phase
where flowers offered all possible combinations of the trained
scents and colours, including flowers where these cues were
put into conflict (figure 1). We expected that if scent and
colour learning were differentially impaired by imidacloprid
exposure, exposed bees would make more of one type of
error (selecting the floral option with the incorrect scent or
colour) compared with the control bees (figure 2b). Alterna-
tively, if scent and colour learning were impaired equally,
we expected that errors of each type would be equally
common in control and imidacloprid-treated bees; this
could also indicate an impairment to the ability to combine
scent and colour stimuli (i.e. multisensory integration [23]).
2. Methods
(a) Subjects
We tested 60 Bombus impatiens individuals from three colonies
(Koppert Biological Systems, USA; electronic supplementary
material, table S1). Colonies were sequentially connected to a
foraging arena (L ×W ×H: 122 × 59 × 59 cm), via a gated passage-
way and trained to forage (during a ‘shaping’ phase) on a
horizontal array of artificial flowers. We maintained colonies
on 30% (w/w) sucrose pipetted directly into honeypots after
each testing day, and approximately 500 mg honeybee-collected
pollen (Koppert Biological Systems, USA) added to each colony
every 2–3 days. We paint-marked foragers; details on shaping,
arena, and artificial flowers are in the electronic supplementary
material.

(b) Pesticide treatment
Imidacloprid solutions were only ever fed to individual bees
before trial 1. We caught foragers as they left the colony by allow-
ing them to walk into a dark holding container (electronic
supplementary material, figure S1a) and fed them either
0.45 ng (22.5 ppb) imidacloprid-containing or control solutions,
in 20 µl of 30% (w/w) sucrose (details in electronic supplemen-
tary material). This dose is in line with field-exposed plants’
nectar, which can range from 1 to 50 ppb, with maximum docu-
mented concentrations of 912 ppb [32,33]; see also Table S2 in
Siviter et al. [14] for average and maximum estimates of neonico-
tinoid concentrations in nectar ingested for a given bumblebee
foraging bout. Our dose is also in line with previous experimen-
tal work on bee behaviour [14]. All foragers consumed the
solution, and were held in the container for 1 h before trial 1 to
maximize pesticide absorption, in line with previous behavioural
studies [20,21,34].

(c) Training and testing
We trained individual bees over two training trials (inter-trial
interval approximately 5 min), followed by a test 10 min later.
For each trial, we gave a bee access to a 48-flower array contain-
ing two artificial floral types: purple scented with linalool and
blue scented with geraniol (electronic supplementary material,
figure S1b,d,e). Each flower type contained either 4 µl of 50%
(w/w) sucrose (rewarding flowers) or 4 µl of water (unrewarding
flowers). Stimuli–reward pairings were counterbalanced across
colonies and pesticide treatment (electronic supplementary
material, table S1). We cleaned flower tops with 70% ethanol
between trials and changed flower locations between each
training trial and bee.

At the start of trial 1, we transferred the bee to a single white
flower, identical to the ones used during the shaping phase, con-
taining 4 µl of 50% (w/w) sucrose solution, and stimulated the
bee’s antennae with 50% (w/w) sucrose to induce proboscis
extension. All bees consumed this sucrose, which was offered
in order to motivate bees to initiate foraging after having been
held in the dark. Bees then free-foraged on the array; we refilled
visited flowers after bees visited three to six subsequent flowers.
We ended trials when a bee returned to the colony via the con-
necting tube or left the array for more than 2 min (we then
manually returned it to the colony). Trial 2 was run identically
to trial 1. If bees did not return for trial 2, we transferred them
to the arena and in most cases the bee then resumed foraging
(electronic supplementary material, table S1). For the test trial,
we presented bees with a 48-flower array with four flower
types, all offering 4 µl of water (electronic supplementary
material, figure S1c), representing the four possible combinations
of the two colours and scents (figure 1), and allowed bees to
make 20 visits.

(d) Behaviour coding and data analyses
We filmed training and test trials from above using an HD Sony
camcorder (30 fps). From the videos we recorded the type of
flower visits bees made (Solomon Coder; https://solomoncoder.
com): ‘rewarding’ (consumes sucrose), ‘unrewarding’ (probes
water), ‘empty’ (probes previously emptied well) or ‘does not
drink’ (lands on the flower but does not probe the well). We ana-
lysed bees’ learning and test performance, as well as their
motivation (tendency to forage in trial 1 and to return to forage
in trial 2) and foraging performance (see electronic supplementary
material). All analyses were carried out in R v.3.4.3. [35].
3. Results
(a) Training trial behaviour
Regardless of pesticide treatment, bees learned across the two
trials, performing better in trial 2 than trial 1 (z = 9.444,
p < 0.0001; electronic supplementary material, figure S2a).
Imidacloprid-treated bees performed worse than control
bees (z = 2.504, p = 0.0123), with this effect being driven by
the treatment where bees were trained that blue/geraniol
flowers were rewarding (pesticide treatment × stimulus treat-
ment: z =−1.970, p = 0.0488; electronic supplementary
material, figure S2b,c). On trial 1, bees performed better
when they were trained to purple/linalool flowers (trial ×
stimulus treatment: z =−2.454, p = 0.0141, stimulus treatment:
z = 9.444; p = 0.00421). In linewithprevious findings [21], imida-
cloprid also impaired bees’ motivation to forage, and their
ability to collect sucrose from flowers (electronic supplementary
material).

(b) Test trial performance
Imidacloprid-treated bees made errors indicating impairment
to olfactory, but not visual, learning. Specifically, these bees
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Figure 1. The training and test conditioned stimuli (CS) (circle colour indicates flower colour; G = geraniol-scented, L = linalool-scented; + = rewarding, − =
unrewarding). Sample size indicates the bees that completed both training trials and performed in the test trial.
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type as it is referred to in the main text. Asterisk indicates significance at a
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mademore scent errors than control bees (error type × pesticide
treatment: z= 2.302, p= 0.0213; pesticide treatment: z =−2.280,
p= 0.023; figure 2a; electronic supplementary material, figure
S3a), regardless of the stimulus combination they were trained
to (Tukey post hoc tests: imidacloprid-treated bees made more
scent errors both for blue/geraniol-trained bees: z =−5.659,
p< 0.0001, and for purple/linalool-trained bees: z =−2.983,
p= 0.0029). While both imidacloprid-treated and control bees
made more colour than scent errors overall (error type: z =
3.847, p = 0.00012; figure 2a), they did not differ in the
number of colour errors they made (Tukey post hoc comparison:
z=−0.672, p= 0.502; figure 2a; electronic supplementary
material, figure S3a). Overall, imidacloprid-treated bees did
not differ from controls in the number of correct flower choices
they made in the test (pesticide treatment: z = 1.063, p= 0.288;
stimulus treatment: z = 0.573, p = 0.567). Regardless of pesticide
treatment, bees that were trained to the purple/linalool stimu-
lus made more scent errors than bees trained to blue/geraniol
(error type × stimulus treatment: z =−2.650, p = 0.00804; elec-
tronic supplementary material, figure S3b). Although we
cannot be certain because colour and scents were always
paired in the current study, this result may be because purple
was preferred over blue (supported by a previous finding
with colour only [21] and consistent with our finding that
81% of bees went to purple/linalool flowers first on trial 1).
Therefore, bees were more likely to visit purple test flowers
even when they contained the incorrect scent.

4. Discussion
A growing body of research demonstrates that neonicotinoid
pesticides have negative effects on bees [36], leading to recent
restrictions in the EU [37]. In addition to impaired colony
reproduction [19], neonicotinoids are associated with a
number of sub-lethal behavioural effects [19], including
impacts on bees’ ability to learn floral stimuli [14]. A missing
piece of this emerging picture is the extent to which these
impairments, documented nearly exclusively in relation to
olfactory learning, transfer when bees encounter more sens-
orially realistic flowers and naturalistic foraging scenarios.
We offered free-flying bumblebees flowers that varied in
scent and colour, and found that olfactory learning, but not
visual learning was impaired by acute exposure to the neoni-
cotinoid imidacloprid: exposed bees made more errors
visiting flowers of the incorrect scent than controls, for both
combinations of stimuli that individuals were trained to.
These results explain at least some of the discrepancies in
previous findings, and raise further questions about the
mechanism behind olfactory learning impairment, which
could have implications for how these pesticides affect
multiple aspects of bees’ ecology.

How might neonicotinoids differentially impair olfactory
learning? Neonicotinoids affect the insect brain by acting as
agonists of nicotinic acetylcholine receptors (nAChRs), with
different neonicotinoids likely differentially activating
specific receptor subtypes [38–40]. It is possible that nAChR
subtype expression differs in the olfactory and visual sys-
tems, leading to the differential effects of imidacloprid
exposure observed here. In the honeybee, imidacloprid can
impair odour coding in antennal lobes, the first odour proces-
sing centre of the bee brain [41], and may even impair
detection of volatiles upstream in antennal sensilla through
action on odorant-binding proteins [42]. To our knowledge,
the effects of imidacloprid on the bee visual system at an ana-
logous peripheral or central level have not been determined
(but see [43]).

Beyond their effects on single sensory modalities, neoni-
cotionids also impair other aspects of cognition, e.g. spatial
working memory [34] and navigation [44]. These effects
may be driven by neonicotinoids activating nAChRs in the
Kenyon cells of the mushroom bodies [45,46], structures
associated with cognition [47,48]. Given that these structures
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are also involved in multisensory integration [23], we might
expect this also to be impaired by neonicotinoid exposure.
While we did not find such evidence in the current study,
this could be a useful avenue for future research.

Another clear result was that neonicotinoid-exposed bees
were less motivated to forage (as in [21,49,50]). A lack of fora-
ging motivation may explain some of the learning
impairments found in previous studies: most have addressed
pesticide effects on learning using the PER protocol [30,31]
(Fig. 1 in [21]). While this protocol has proved extremely
useful for studying learning in bees [51], because bees are
immobilized, identifying specific effects on foraging behav-
iour can be difficult. For example, effects on motivation
may be confounded with effects on learning. In the current
study, all bees exhibited PER for sucrose when stimulated
at the start of trial 1, but many were not motivated to sub-
sequently forage. If this had been assessed in a PER
protocol these bees may have been included as being ‘motiv-
ated’ to exhibit PER (when stimulated) but may not have
been sufficiently motivated to exhibit PER for a conditioned
stimulus alone. Since this is the measure of learning in
PER assays, motivational deficits could be misinterpreted as
learning deficits.

What consequences might the impairment to olfactory
learning we found here have for bee performance more
generally? Crucially, olfactory impairment was not always
compensated for by the availability of visual cues: when
blue/geraniol flowers were rewarding, imidacloprid-treated
bees performed worse than control bees during the learning
trials. That this effect was driven by the olfactory rather
than the visual cue is supported both by the test results
and by previous work where colour learning was unaffected
by imidacloprid across a range of doses [21]. The lack of an
effect during training for purple/linalool-trained bees is
likely because this was the preferred flower type, and thus
it might be more difficult to impair learning in relation to
this stimulus. If not only learning, but also olfactory
perception more generally is impaired [41,42], then neonico-
tinoids may have more serious holistic effects on behaviour
than previously recognized. Bees rely upon chemoreception
for a variety of foraging and non-foraging tasks [52], includ-
ing pollen detection [53], nest recognition [54] and
pheromonal communication within the colony [55], and
thus any or all of these behaviours could also be disrupted.

While we did not find impairment to visual associative
learning here, it is possible that it could be impaired under
different scenarios, e.g. involving different neonicotinoids,
chronic rather than acute exposure or when flowers offer
different scents or colours. In the current study, the colour
stimuli we chose were relatively difficult for bees to learn to
discriminate compared with the scent stimuli, so if our effects
simply reflected differences in stimulus discriminability, we
would predict the opposite result (i.e. greater impairment
to colour learning). However, a clear next step would be to
test our finding over a broader range of stimuli. Given that
generalist bees rely on a broad range of cognitive abilities
[56], moving towards assays that measure cognition in
more naturalistic settings is critical to fully understand
these pesticides’ effects on bees.
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